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1.0 INTRODUCTION 

This volume documents t h e  key system and program t r ade  s t u d i e s  performed 
during the i n i t i a l  con t r ac t  period (through 15 October 1985) t o  a r r i v e  a t  a 
p re fe r r ed  O r b i t a l  Transfer  Vehicle (OW) system concept and evolutionary 
approach t o  the a c q u i s i t i o n  of the r e q u i s i t e  c a p a b i l i t i e s .  These e f f o r t s  were 
expanded t o  encompass a Space Transportat ion Arch i t ec tu re  Study (STAS) mission 
model and recommended unmanned cargo veh ic l e  i n  a study extension reported on 
i n  Volume I X .  
t he  sys t em requirements i d e n t i f i e d  as p a r t  of c o n t r a c t  SOW Task 1 and the 
concept syn thes i s  and t r a d e  s t u d i e s  performed under c o n t r a c t  SOW Tasks 2 and 3. 

The b a s i s  f o r  these i n i t i a l  t r a d e  s t u d i e s  and comparisons is  

The most important f a c t o r s  a f f e c t i n g  the r e s u l t s  presented i n  t h i s  volume 
a r e  the mission model requirements and s e l e c t i o n  cr i ter ia .  The reason f o r  
conducting the OTV concept d e f i n i t i o n  and system analyses  study i s  t o  select  a 
concept and a c q u i s i t i o n  approach t h a t  meets a de l ive ry  requirement r e f l e c t e d  
by the mission model. There a r e  two p o t e n t i a l  j u s t i f i c a t i o n s  f o r  an OTV: t o  
compete with e x i s t i n g  expendable upper s t a g e s ,  and t o  provide a heavy l i f t  and 
man-rated c a p a b i l i t y  t h a t  does not  now e x i s t .  The l a t t e r  reason does no t  
support  an e a r l y  start of OTV development. 
i d e n t i f i e d  i n  the  Revision 8 Low Mission Model (20 k l b  t o  geosynchronous Earth 
o r b i t  [GEO])  f a l l s  i n  1999 and the man-rated payload occurs i n  2008. 
compelling reason f o r  considering a near time OTV c a p a b i l i t y  i s  t o  improve the 
economics of space t r a n s p o r t a t i o n  and make the  NASA Space Transportat ion 
System competit ive with e x i s t i n g  and emerging fo re ign  and commercial de l ive ry  
sys tems.  
s t r u c t u r e d  t o  r e f l e c t  economic f a c t o r s  such as f r o n t  end c o s t ,  r e t u r n  on 
investment, and economics of the system a f t e r  it is  i n  place as w e l l  as 
cons ide ra t ions  of r i s k  and f l e x i b i l i t y .  

The heavy l i f t  requirement 

The one 

A s  a consequence, our  system and program s e l e c t i o n  cri teria has been 

Figure 1.0-1 summarizes t h e  sequence of program development followed i n  
t h i s  study. Our pre-contract IR&D s t u d i e s  had developed a r e fe rence  ground 
based A f t  Cargo Carrier (ACC) configurat ion.  By the March 1985 mid-term 
review, high p o t e n t i a l  cryogenic a n d ' s t o r a b l e  concepts had been i d e n t i f i e d ,  
and subsystem t r a d e s  had s e l e c t e d  the  p re fe r r ed  subsystem configurat ions.  
t h i s  time, the  mission model underwent a s i g n i f i c a n t  change. 
subsystem dec i s ions  were reassessed and changes were incorporated.  
proceeded t o  i d e n t i f y  and t r ade  a l t e r n a t i v e  a c q u i s i t i o n  s t r a t e g i e s .  
outputs of t h i s  phase of the study were configurations capable of meeting the 
mission d e l i v e r y  requirements of the Revision 8 Low Mission Model i n  the most 
d e s i r a b l e  way, and the program t h a t  should be pursued i n  t h i s  development. 
Only study recommendations t h a t  could be j u s t i f i e d  on the b a s i s  of the low 
model were made a t  the request  of MSFC. 
described i n  the following paragraphs. 

A t  
Our concepts and 

We then 
The n e t  

The s e l e c t i o n  procedure is f u r t h e r  

1 
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1.1 Decision Summary 

There are t h r e e  bas i c  v i a b l e  approaches t o  providing o r b i t a l  t r a n s f e r  f o r  
the high a l t i t u d e  missions t o  be conducted in the  coming decades: 
e x i s t i n g  cryogenic expendable vehicle;  Development of a new s t o r a b l e ,  
reusable ,  pump fed  OTV; O r  development of a new, reusable  cryogenic OTV. 
dec i s ion  network i n  Figure 1.1-1 summarizes the  evolut ionary paths  these  
approaches could fol low and i d e n t i f i e s  the t r ade  s t u d i e s  conducted a t  po in t s  
along the  path.  
expendable ground based veh ic l e  f l e e t  through the e n t i r e  mission model t o  
e s t a b l i s h  a c o s t  comparison r e f l e c t i n g  as l i t t l e  change as possible  t o  the 
c u r r e n t  way of providing space t r anspor t a t ion .  We l a i d  ou t  programs t h a t  
r e f l e c t e d  development of both s t o r a b l e  and cryogenic reusable  O T V s  t h a t  
evolved from ground based t o  space based operation. 
were developed through the point  where space basing impacts were understood 
before a s e l e c t i o n  w a s  made between them. 
ground based veh ic l e s  (ACC vs Cargo bay),  and the  merit of man-rating the 
ground based veh ic l e  were considered. 
compared, as w a s  t h e  p re fe r r ed  t i m e  f o r  introducing man-rating in a space 
based vehicle .  
s e l e c t i o n  w a s  a v a i l a b l e ,  and t h i s  s e l e c t i o n  w a s  made. F i n a l  program 
comparisons were made t o  s e l e c t  the OTV program bes t  a b l e  t o  provide the 
c a p a b i l i t y  required by the Revision 8 OTV Low Mission Model. 

Growth of 

The 

We c a r r i e d  a program r e f l e c t i n g  growth of the cu r ren t  

These p rope l l an t  opt ions 

Engine s e l e c t i o n ,  de l ive ry  mode f o r  

Space base accommodations were 

A t  t h i s  po in t ,  a l l  the da t a  required t o  make the  p rope l l an t  

Trade s t u d i e s  were conducted t o  implement the  d e r i s i o n  tree shown in 
Figure 1.1-1. This  sequence of t r ades  i d e n t i f i e d  preferred a l t e r n a t i v e s  f o r  
key program elements and served as a b a s i s  f o r  s e l e c t i n g  a preferred o v e r a l l  
OTV evolut ionary s t r a t e g y  f o r  t r a n s i t i o n i n g  from an  i n i t i a l  ground based OTV 
conf igu ra t ion  t o  a man-rated configurat ion f o r  space based operat ions with the 
a v a i l a b i l i t y  of the Space S t a t i o n  in 1999. 

The t r ade  s t u d i e s  shown i n  t h i s  r epor t  include: 

Sect ion 2.1 
Sect ion 2.2 
Sect ion 2.3 

Sect ion 2.4 
Sect ion 2.5 
Sect ion 2.6 
Sect ion 2.7.2 

Sect ion 2.7.3 

Aeroassis t  vs  All-Propulsive R e t r i e v a l  
IOC Cryogenic Engine Se lec t ion  
Evolutionary Path t o  Man-Rating and Cost 
E f f e c t i v e  R e l i a b i l i t y  Requirements 
Space Based Propel lant  Acquis i t ion 
Space Based Tank Farm Se lec t ion  
Cryogenic Versus Storable  Upper Stages 
ACC OTV Delivery/Scavenging Versus STS 
Cargo Bay OTV Delivery/Scavenging 
Overal l  OTV Program Evolutionary Strategy 
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1.2 Mission Model 

This study w a s  i n i t i a t e d  with the ob jec t ive  of meeting the mission 
requirements de l inea ted  in Revision 7 of the MSFC OTV Mission Model. 
major c h a r a c t e r i s t i c s  of t h i s  model are summarized i n  Table 1.2-1. A t  the 
midterm review, a new Revision 8 mission model, Table 1.2-2, w a s  issued f o r  
use through the remainder of t he  bas i c  study. 
i n s t r u c t e d  t o  make recommendations t h a t  were j u s t i f i a b l e  based on the  Revision 
8 Low Mission Model. 

The 

The study con t r ac to r s  were 

The const i tuency of the Revision 8 model is e s s e n t i a l l y  the same as 
Revision 7 except f o r  the e l imina t ion  of the 14 klb/14 k l b  manned GEO 
mission. This mission w a s  a d r i v e r  f o r  OTV but is now replaced with a more 
modest manned mission payload of 7.5 klb/7.5 klb.  The e l imina t ion  of the 
manned luna r  mission from the  low model is not s i g n i f i c a n t  in discounted 
economic terms but does impact the s i z i n g  of OTV s tages .  

The major r e v i s i o n  impact is t he  reduct ion i n  projected annual and t o t a l  
t r a f f i c  f o r  OTV. Revision 7 r e f l e c t e d  an  average of 27 f l i g h t s  per year on 
the nominal model while the Revision 8 Low Mission Model has  only 9.  
impacts the expected economic b e n e f i t s  t h a t  can be accrued and, t he re fo re ,  the 
amount of r e t u r n  on investment. 

This  

Even with these  changes, the e f f e c t i v e  average OTV de l ive ry  requirement 
changed very l i t t l e .  
p rope l l an t  requirement of 4 3  k l b  and the  Revision 8 Low Mission Model has an 
average p rope l l an t  requirement of 42.7 klb.  
the f a c t  t h a t  mu l t ip l e  de l ive ry  and DOD payloads dominate both models. 

The Revision 7 Nominal Mission Model had an average 

This  c l o s e  r e l a t i o n s h i p  r e f l e c t s  
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Table 1.2-3 shows t h e  design re ference  missions from t h e  nominal Revision 
8 model. 
ope ra t iona l  d a t e s ,  is  t h e  80 klb/15 k l b  manned luna r  mission. We used t h e  low 
model in our t r a d e  s t u d i e s  f o r  s e l e c t i o n  of conf igura t ion  and evolu t ionary  
s t r a t e g y  and then noted the  design and programmatic impl ica t ions  of going t o  
the  nominal model. 

The one d i f f e r e n c e  from the  low model, a s i d e  from the  change in 

TABLE 1.2-3 DESIGN REFERENCE MISSION, REVISION 8 NOMINAL MODEL 

I i MISSION i FLIGHT i i 
I MISSION TYPE I NUMBER 
I Mult iple  Payload I 18912 
I 12000~2000 - I 

I 7000/4510 I 

I 20000/0 I 

I 7500/7500 I 

I Unmanned GEO I 
I Missions I 13002 

I GEO Del ivery I 18040 

I Manned GEO Sor t ie1  15700 

I GEO Platform I 13700 
I 20000/0 I 
I *Manned Lunar I 17203 
I S o r t i e  I 

DATE I I 
* 1994 J G B  OTV Performance Driver  I 

I I 

1996 !Rendezvous t o  Perform Serv ic ing  I 
I I 

1997 IPerformance Driver  I 
I I 

2002 IMission Duration - 18 Days I 
I I 

I F i r s t  Long Duration Mission - 10  Days I 

1998 lLow g Requirement I 
I I 

I I 
2006 (Mult iple  Configurat ion Requirement I 

I 80000/15000 I I I I 

Tables 1.2-4 and 1.2-5 compare the  design reference missions der ived  from 
the  low Revis ion 7 and Revis ion 8 models. 

The mul t ip l e  payload mission s tayed approximately. the same. 

The mission du ra t ion  of 18 days w a s  added although t h i s  w a s  a l s o  a 

The MOLNIYA 
(and GPS missions)  were not  i nd iv idua l ly  s p e c i f i e d  and the  low g mission w a s  
added. 
r e l i a b i l i t y  d r i v e r  under Revis ion 7. 
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TABLE 1.2-4 DESIGN REFERENCE MISSION, REVISIOM 7 LOW MISSION MODEL 

I ISELECTED DRM 
I I MISSION MODEL 
I MISSION TYPE I NUMBER 
I Mult iple  Payload IRemanifested 
I Delivery I 18903 
I 12876 Up I 
I 2166 Down I 
I Molniya and GPS IUnique 
I Missions I Delivery 
I I Missions 
I Unmanned Service I 13002 
I 7K Up I 
I 4.51K Down I 

1 
‘I  
I 
1 
I 
I 

I 
I 
1 
I 
I 

.f 

FIRST 
FLIGHT 
DATE 

’ 1993 

1993 

1995 

I i i 
I 20K Up 0 Down I I 
I GEO Delivery I 13003 I 1996 

I 

OW I 
I 
I 

Space-Based Operation I 
I 

F i r s t  Rendezvous and Docking I 

Drives F l i g h t  Operations and I 

Performance Driver f o r  ground-basedl 

Mission Operation D i f f i c u l t y  f o r  I 

Autonomous Rendezvous and Docking I 

Equipment Complexity I 
Earliest  Required Mission I 
Most Frequent Mission I 

TABLE 1.2-5 DESIGN REFERENCE MISSION, REVISION 8 LOW MISSION MODEL 

I I 1 FIRST I I 
I I MISSION I FLIGHT I I 
I MISSION TYPE I NUMBER I DATE I I 
I Multiple Payload I 18912 I 1994 IGB OTV Performance Driver I 
I 12000j2000 - I I I I 
I Unmanned GEO I I ( F i r s t  Long Duration Mission - 10 Days I 
I Missions I 13002 I 2001 . IRendezvous t o  Perform Servicing I 
I 7000/4510 I I I I 
I GEO Delivery I 18040 I 2001 IPerformance Driver I 
I 20000/0 I I I I 
I Manned GEO S o r t i e [  15700 I 2008 IMission Duration - 18 Days I 
I 7500/7500 I I I I 
I GEO Platform I 13700 I 2004 lLow g Requirement I 
I 20000/0 I I I I 

1.3 Selection Criteria 

The s e l e c t i o n  c r i te r ia  t o  be used i n  d i f f e r e n t i a t i n g  among a l t e r n a t i v e  OTV 
sys t em and program opt ions depends on the environment i n  which the system 
operates .  A competit ive environment, one where c a p i t a l  f o r  investment is 
scarce, in f luences  how the  dec i s ion  i s  made f o r  a new venture.  
a competit ive environment and is being considered f o r  development on the  b a s i s  
of the a t t r a c t i v e n e s s  of reducing the  c o s t  of payload de l ive ry .  
e f f e c t i v e n e s s  of OTV i n  reducing the r e c u r r i n g  cost of payload de l ive ry  must 
be balanced aga ins t  a c q u i s i t i o n  cos t  i n  terms of s e v e r a l  economy f a c t o r s .  
i t s  advantage is s i g n i f i c a n t ,  i t  makes the  STS and OTV more a t t r a c t i v e  t o  
use r s .  

The  OTV i s  i n  

The 

I f  
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Non-economic f a c t o r s  are a l s o  important. The mission model i s  a 
p ro jec t ion  of t he  expected OTV marketplace and should not be viewed as a f ixed  
o r  absolute  opportunity.  
i s  important,  i .e.,  t he  a b i l i t y  t o  a d j u s t  t o  poss ib l e  requirement changes o r  
t o  be used f o r  f u t u r e  missions. It provides a measure of the c a p a b i l i t y  t o  
evolve o r  grow t o  s a t i s f y  changes i n  the market. Also, the r i s k s  a t t endan t  
with candidate OTV opt ions and a c q u i s i t i o n  s t r a t e g i e s  are important because 
they r e f l e c t  t he  p o s s i b i l i t y  of increased cos t .  
be assessed are those t h a t  cannot be mit igated o r  con t ro l l ed  by the OTV design. 

The p o t e n t i a l  growth and f l e x i b i l i t y  of each opt ion 

Key e x t e r n a l  r i s k  f a c t o r s  t o  

Cost d a t a  p ro jec t ed  f o r  OTV systems development is compared a g a i n s t  the 
c o s t  of competit ive sys tems which e x i s t  o r  possess proven technology. 
economic advantage of the OTV system over i t s  competit ion must be present  t o  
provide a measure of its v i a b i l i t y .  

The 

I n  t h e  t r a d e  s t u d i e s ,  the cos t  da t a  i n  1985 constant  and discounted 
d o l l a r s  is provided and the economic f a c t o r s  are der ived and presented. 
Economic dec i s ions  are made using Present  Value (PV) d o l l a r s .  Present  value 
is  a time p r o j e c t i o n  of the value of money when i n f l a t i o n  and the  discounted 
value of t he  d o l l a r  a r e  taken i n t o  account. ' I n  accordance with the ground 
r u l e s ,  the PV used i n  the s t u d i e s  incorporates  a zero percent i n f l a t i o n  rate 
and a t e n  percent discount rate. 

Several  economic f a c t o r s  are used t o  he lp  determine the best  a l t e r n a t i v e ,  
Depending on the na tu re  of the study, d i f f e r e n t  economic f a c t o r s  may be 
s e l e c t e d  f o r  t he  ana lys i s .  
s t u d i e s ,  except the Man Rating and R e l i a b i l i t y  Trade Study, are Design 
Development Test and Engineering (DDT&E), Benefi t ,  and Return on Investment 
(ROI). The na tu re  of the Man Rating and R e l i a b i l i t y  study i s  d i f f e r e n t  i n  
that r e l i a b i l i t y  values  are determined f o r  use on a l l  OTVs r a t h e r  than making 
a s e l e c t i o n  among a number of proposed a l t e r n a t i v e s .  

Three p r i n c i p a l  economic f a c t o r s  used f o r  a l l  

The economic f a c t o r s  used i n  the t r ade  s t u d i e s  are described below. These 
f a c t o r s  are used ind iv idua l ly  and i n  combination with one another t o  he lp  
provide an  i n d i c a t i o n  of the bes t  a l t e r n a t i v e .  A s  can be seen, some of the 
f a c t o r s  are nested i n  o the r s .  For example, DDT&E i s  used as a subfac to r  i n  
the R O I  a n a l y s i s .  
s u f f i c i e n t  t o  reach a v a l i d  conclusion by i t s e l f .  
identify an alternative as the best buy, but the DDT&E cost of the alternative 
may not be a f fo rdab le  i n  view of ava i l ab le  budget. 

It should a l s o  be noted t h a t  any s i n g l e  f a c t o r  may not be 
For in s t ance ,  the ROI  may 

Once the  economic f a c t o r s  of the a l t e r n a t i v e s  have been determined, a 
sco re  is provided. The preferred a l t e r n a t i v e  f o r  each economic f a c t o r  i s  
given a sco re  of 10 and the other  a l t e r n a t i v e s  a r e  given a sco re  r e l a t i v e  t o  
the a l t e r n a t i v e  marked with a 10. 
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An explanat ion of the economic f a c t o r s  used i n  t h i s  r e p o r t  is shown below: 

a. Design, development, test  and eva lua t ion  (DDTCE). DDThE is a 
rep resen ta t ion  of the investment cos t  t o  develop a product. 

b. Benefi t .  
vis-a-vis t he  competition (which is gene ra l ly  no t  taking any a c t i o n  
a t  a l l ) ,  it is determined by f ind ing  the d i f f e rence  between the  c o s t  
of t he  competit ion doing the task and the  c o s t  of a p a r t i c u l a r  
a l t e r n a t i v e  doing the task.  For example, the bene f i t  of a p a r t i c u l a r  
OTV a l t e r n a t i v e  would be represented by f i n d i n g  the  d i f f e rence  
between t h e  c o s t  per f l i g h t  of competing (Cpf,) systems and t h i s  
c o s t  per f l i g h t  of the OTV (Cpf,). The t o t a l  bene f i t  would be 
represented by mult iplying t h i s  d i f f e rence  by the number of f l i g h t s  
(Nc and No) projected in the mission model. 

Benefi t  = 

Benefi t  determines t h e  value o r  p r o f i t  of an a l t e r n a t i v e  

CPF, * Nc - CPF, * No 

c. Return on Investments (ROI). R O I  is a measure of the bes t  buy. It 
is determined by d iv id ing  b e n e f i t  (described i n  b above) by DDT&E t o  
produce a bes t  p r o f i t  t o  c o s t  r a t i o ,  To normalize the equat ion,  one 
is sub t r ac t ed  from the r e s u l t .  I f  the r a t i o  is negat ive,  t he  opt ion 
is not  a v iab le  economic venture.  I f  the r a t i o  is zero,  the venture 
r e t r i e v e s  t h e  investment but is not p r o f i t a b l e .  A p o s i t i v e  r a t i o  
i n d i c a t e s  the venture is p r o f i t a b l e ,  i .e. ,  worthwhile vis-a-vis not 
undertaking the venture and r e l y i n g  on e x i s t i n g  c a p a b i l i t i e s .  

The algori thm f o r  ROI  is: 

CPF, * N, - CPF, * No - - 
R O I  = - 1  

DDT&E 

A l l  c o s t s  used f o r  t he  bene f i t  and ROI equations are 1985 discounted 
d o l l a r s .  

d. L i f e  Cycle  Cost (LCC). LCC is a rep resen ta t ion  of t o t a l  c o s t s  over 
t h e  l i f e  of a system. 
developed w i t h  company funding. The model c a l c u l a t e s  a l l  phases of 
c o s t  based on the  t echn ica l  d e s c r i p t i o n  of the OTV, the ope ra t iona l  
s cena r ios ,  and the requirements of any supporting program, e.g., 
Space S t a t i o n ,  Af t  Cargo Carrier. 

Martin Marietta uses  a LCC computer model 

Typical  i npu t s  t o  the  LCC model include the following: 

o OTV s t a g e  weight f o r  t he  subsystem component l e v e l ;  

o T e s t  hardware requirements; 

0 Annual mission and p rope l l an t  requirements ; 

o Operational turnaround times; 

o I n t r a v e h i c u l a r  a c t i v i t y  ( IVA)  and ex t r aveh icu la r  a c t i v i t y  (EVA) 
requirements; 
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o Key implementation schedule da t e s ;  

o Supporting program da ta ;  and 

o S p e c i f i c  payload t r a n s p o r t a t i o n  requirements. 

e. Cost per  f l i g h t ,  competition (Cpf,). Cpf, r ep resen t s  t he  per 
f l i g h t  ope ra t ions  c o s t  of the competing system(s1. 

f .  Cost per f l i g h t ,  op t ion  (Cpf,). Cpf, r ep resen t s  t h e  per  f l i g h t  
operat ions c o s t  of the opt ion under considerat ion,  i.e., OTV o r  
program option. 

g .  Payback. Payback r ep resen t s  t h e  amount of projected economic 
advantage r e a l i z e d  a f t e r  the implementation of the system. 
provides a measure of how quickly the investment is captured in 
revenues. It is t y p i c a l l y  p lo t t ed  along with the investment cos t  
(DDT&E) t o  determine the  c r o s s  over point where the  advantage of 
going t o  the new system is f i rs t  r ea l i zed .  
systems may be p l o t t e d  together  f o r  the purpose of comparison. 

It 

Several  a l t e r n a t i v e  

h. Growth and f l e x i b i l i t y .  
a d j u s t  t o  poss ib l e  requirements changes o r  t o  continued use f o r  
f u t u r e  missions. 

Growth and f l e x i b i l i t y  is the a b i l i t y  t o  

i. Risk. 
wrong in the  f u t u r e  i f  an  a l t e r n a t i v e  is se l ec t ed .  
t he  p r o b a b i l i t y  and the  p o t e n t i a l  ser iousness  of something going 
wrong. 

Risk is an assessment of what cos t  r e l a t e d  f a c t o r s  might go 
It considers  both 

j. Uniform v s  Discrete Discount Methodologies. Within these  t r a d e  
s t u d i e s ,  two d i f f e r e n t  ways of determining discounted c o s t s  were 
employed. 
(using 1985 d o l l a r s  as the  base year) .  
represented as follows. L e t  

The first method involves spreading the c o s t s  yea r  by year 
Mathematically t h i s  is 

C i  = Costs incurred in Year i 
Pi = Discount f a c t o r  f o r  Year i 
D i  - Discounted costs f o r  year i, then 

D i  = Pi * C i ,  and 
D = Sum (Pi * Ci) f o r  a l l  i 

For the case of uniform funding d i s t r i b u t i o n s :  

C i  = C i - 1  f o r  a l l  i where i-1 does not equal  0 ,  
C = C i  f o r  a l l  i 
D = C * Sum (Pi), t hus  
P = Sum (Pi) can be expressed as a constant  f a c t o r .  

and 
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2.0 TRADE STUDIES 

2.1 All-Propulsive Versus Aeroass i s t  Trade Study. 

The purpose of t h i s  t r ade  study is t o  eva lua te  the  economic f a c t o r s  of 
recovering the  OTV a t  low Earth o r b i t  (LEO) from high a l t i t u d e  missions us ing  
the a l l -propuls ive  and a e r o a s s i s t  recovery concepts and t o  i d e n t i f y  which of 
t he  two concepts provides t h e  bes t  economic so lu t ion .  

Earlier Phase A s t u d i e s  conducted from 1979-1981 by Boeing and General 
Dynamics show t h e  v i a b i l i t y  of re turn ing  upper s t age  vehic les  and t h e i r  
payloads from high o r b i t  t o  LEO. 
a l l -propuls ive concepts.  
out  the  d e l t a  ve loc i ty  of an OTV o r  OTV-and-payload upon r e t u r n  t o  LEO have 
been examined. 
p o t e n t i a l  advantage the a e r o a s s i s t  recovery concept holds over the  
a l l -propuls ive  concept. 
curves on the  f i g u r e  show t h e  percentage of propel lan t  the  a e r o a s s i s t  concept 
can save over the  al l -propuls ive concept as a func t ion  of the  aerobrake 
weight/recovery weight- ra ted .  I n  a 20K de l ive ry  mission, an aerobrake 
weight/recovery weight r a t i o  of 0.22 is r ea l i zed ,  i.e., brake w t .  1885 / 
( r e t u r n  s t age  w t .  8404 + prop. w t  200) = 0.22. For a 14K roundt r ip  mission,  a 
r a t i o  of 0.08 is r e a l i z e d ,  i .e.,  brake w t  1885 / ( r e t u r n  s t age  w t .  8880 + prop 
w t  250 + PL w t  14,000) = 0.08. A s  can be seen  on Figure 2.1-1, extension Of 

these  aerobrake weight/recovery weight r a t i o s  show a 1 4  and 45 percent 
a e r o a s s i s t  p rope l lan t  savings over the a l l -propuls ive  concept f o r  the 20K 
de l ive ry  and 14K roundt r ip  missions,  respec t ive ly .  

These s t u d i e s  were based mainly on the  
Current concepts using an a e r o a s s i s t  device t o  take 

An ana lys i s  produced f o r  our  f i r s t  qua r t e r  r epor t  showed the  

This  ana lys i s  is summarized in Figure 2 .l-1. The 

. 

. 

2.1.1 Approach 

Costing of the  al l -propuls ive and a e r o a s s i s t  concepts is made based upon 
OTV mission t r a f f i c e  i d e n t i f i e d  i n  the  Revision 7 Nominal Mission Model. An 
ana lys i s  is made f o r  both ground and space based modes of operat ion t o  
determine i f  OTV design concepts are capable of accomplishing the  missions as 
w e l l  as iden t i fy ing  the economic v i a b i l i t y  of the  concepts.  Cost f i g u r e s  a r e  
compared aga ins t  the  competit ion which is represented by a Centaur upper s t age  
vehic le .  
capable of accomplishing missions contained i n  the  mission model. 

The Centaur is chosen as t h e  cu r ren t ly  a v a i l a b l e  vehic le  most 

Derived c o s t  f i g u r e s  f o r  the  al l -propuls ive and a e r o a s s i s t  concepts and 
the  competit ion a r e  run through an economic a n a l y s i s  t o  he lp  determine the 
advantages one concept ho lds  over t he  o the r ,  
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2.1.2 Ground Rules and Assumptions 

Ground Rules and assumptions used f o r  the study are shown below. 

0 The fol lowing ground r u l e s  are constant f o r  both op t ions  

0 

0 

0 

0 

0 

Constant f i s c a l  year  1985 d o l l a r s  excluding f e e  & contingency 
Space based cryogenic configurations:  
No evo lu t ion  over the 17 year operat ions period 
Ground tes t  hardware includes Ground Vibrat ion Test Article (GVTA), 
S t a t i c  Test Article (STA), Main Propulsion T e s t  Article (MPTA), and 
Funct ional  Test Article (FTA) 
Space s t a t i o n  requirements a r e  assumed similar f o r  both concepts. 
Therefore,  cos t  impacts are not included 
I n i t i a l  OTV production requirements: 2 u n i t s  
F l i g h t  test art icle and GVTA refurbished f o r  ope ra t iona l  s t ages  
2 OMV uses per mission 
Ground mission operat ions a t  35 man-yrs/yr 
IVA & mission Ops costs :  $16,00O/hr; EVA cost :  $48,00O/hr 
IVA/mission = 80 h r s ;  EVA/mission = 4 h r s  
2 STS d e l i v e r i e s  per OTV: 0.2 STS d e l i v e r i e s  per engine se t  

I O C  is  1994 

0 Reference al l -propuls ive 

o 29.2 mlb of p rope l l an t  f o r  389 missions 
o 4 hrs /mission f o r  space based mission operat ions 
o 20 equivalent  operat ions spa res  (excluding engines) 
o Engine l i f e  = 15 missions (460K i s p  P r a t t  & Whitney) 

0 Reference ae roass i s t ed  OTV 

o 
0 .  6 hrs/mission f o r  space based mission operat ions 
o 20 equivalent  operat ions spa res  (w/o engine o r  aerobrake) 
o 
o Aerobrake l i f e  = 5 f l i g h t s  
o 0.33 STS d e l i v e r i e s  per  aerobrake 

19.9 mlb of propel lant  f o r  389 missions 

Engine l i f e  = 20 missions (460K i s p  P r a t t  6 Whitney) 

2.1.3 A l t e r n a t i v e s  

Two b a s i c  a l t e r n a t i v e s  a r e  evaluated i n  t h i s  study: the al l -propuls ive 
concept and the a e r o a s s i s t  concept. 
upper s t a g e  engine t o  slow the  OTV or OTV and payload f o r  LEO. 
evaluated f o r  the al l -propuls ive a l t e r n a t i v e  uses  a l i q u i d  oxygen/liquid 
hydrogen engine with an  I s p  of 460 seconds. 

The al l -propuls ive concept employs the 
The vehicle  

The a e r o a s s i s t e d  a l t e r n a t i v e  uses  a device t o  perform a n  a e r o a s s i s t  
maneuver t o  slow the OTV (or OTV and r e t u r n  payload) f o r  low Earth o r b i t .  
a e r o a s s i s t  maneuver uses  the  e a r t h ' s  atmosphere t o  reduce the veh ic l e ' s  
v e l o c i t y ,  thereby reducing the  rocket  burn required t o  e n t e r  low e a r t h  o r b i t  
when r e t u r n i n g  from GEO o r  o the r  high o r b i t s .  
accomplished by grazing the upper atmosphere and converting the veh ic l e ' s  

The 

This aeromaneuver i s  
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I *  
k i n e t i c  energy t o  heat. To c o r r e c t  f o r  dens i ty  v a r i a t i o n s  and navigat ional  
u n c e r t a i n t i e s  during the aeropass,  p rec i se  aerodynamic c o n t r o l  is required.  
We have evaluated a veh ic l e  t h a t  uses veh ic l e  l i f t  f o r  con t ro l .  This vehicle  
u ses  the deployable con ica l  f a b r i c  l i f t i n g  brake. (Reference: Subsystem 
Trade S tud ie s ,  Volume 11, Book 3, Sect ion 2.2). 

o STS d e l i v e r y  t o  LEO 

2.1.4 Cost of A l t e r n a t i v e s  

An eva lua t ion  of the al l -propuls ive concept i n  both the ground based and 
space based modes w a s  made. 
f e a s i b l e  when flown aga ins t  Revision 8 of the MSFC LOW Mission Model. 
w a s  shown by running a 12 k l b  GEO de l ive ry  payload through a f l i g h t  s imulat ion 
model. This  s imulat ion uses an OTV with a 55 k l b  p rope l l an t  capaci ty  and with 
no aerobrake. 

The al l -propuls ive ground base mode is no t  
This 

The following r e s u l t s  were produced: 

o P rope l l an t  required: 59,037 l b  (ergo exceeds t h e  OTV 55 k l b  tank 
capaci ty  1 

o Weight' of OTV, prope l l an t ,  and payload: 77,472 l b  (ergo exceeds the  
STS 72 k l b  payload capac i ty )  

This a n a l y s i s  alone does not  eliminate the al l -propuls ive a l t e r n a t i v e .  A s  an 
evolut ionary opt ion,  expendable upper s t age  veh ic l e s  could be' used during the 
ground based mode of the mission model. 
begun during the space based mode of the mission model. 
approach is  a t  more of a disadvantage r e l a t i v e  t o  a e r o a s s i s t  than is t h e  case 
i n  the space based ope ra t iona l  mode. 
requirements of c e r t a i n  payloads, an al l -propuls ive GBOTV would r e q u i r e  
sepa ra t e  STS manifesting of payload and s t age /p rope l l an t s ,  thus incu r r ing  
t r a n s p o r t a t i o n  c o s t s  w e l l  beyond the s i n g l e  STS requirement of an a e r o a s s i s t  
concept. 
a e r o a s s i s t  t r a d e  i n  the  space based mode. 
w i l l  a l s o  be a winner i n  the  ground based mode. 

The al l -propuls ive operat ion could be 
However, t h i s  . 

Due t o  the g r e a t e r  p rope l l an t  

For t h i s  reason, we e l e c t e d  t o  complete the al l -propuls ive versus 
I f  a e r o a s s i s t  wins i n  t h i s  mode, i t  

L i f e  cycle c o s t s  f o r  DDT&E, production and operat ions are shown on Table 
2.1-1. AFE c o s t s  are included i n  DDT&E. 
operat ions c o s t  is propel lant .  Addit ional ly ,  d i f f e r e n t  s t age  sizes caused 
h ighe r  a i r f rame refurbishment and I V A  c o s t s  f o r  the al l -propuls ive candidate.  

Note the  p r i n c i p a l  d e l t a  under 

The c o s t  per f l i g h t  f o r  each a l t e r n a t i v e  and the  competit ion is shown i n  
Table 2.1-2. 
concepts are der ived by d iv id ing  the operat ions c o s t  by the number of missions 
flown and adding the  c o s t  f o r  d e l i v e r i n g  t h e  payload t o  LEO. Payload de l ive ry  
is included t o  make OTV c o s t s  comparable with the  competition. 

The c o s t  per f l i g h t  f o r  the al l -propuls ive and a e r o a s s i s t  

The Centaur, which is used t o  r ep resen t  t he  competition, r ep resen t s  the 
veh ic l e  which could best be upgraded t o  accommodate t h e  mission model 
requirements. 
on the following : 

The c o s t  per f l i g h t  of t h i s  veh ic l e  I s  f igu red  a t  $123M based 

o Centaur u n i t  cos t  $50M 

7 3 M  
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TABLE 2.1-1 ALL-PROPULSIVE vs AEROASSIST LCC (CONSTANT $1 

I I ALL PROP. I AEROASSIST I DELTA I 
I (Savings) I 

I I I 
I I I 
I 
I DDT&E 
I Stage 
I Systems 
I 

I $1245.60M I $1316.50M 
I 891.30 I 949.60 
I 354.40 I 366.90 
I I 

I Production I 58.10 

I Operations I 20086.60 
I Miss O p s .  SB I 211.60 
I Miss Ops. GB I 35.90 
I Launch O p s .  SB I 235.70 
I Launch Ops. GB I 3151.00 

j 14%:300 
I Program Support 
I Prope l l an t  
I Stage ops 
1 Airframe Refurbish I 880.30 
I IVA/EVA A i r  Frame (AF) I 572.60 
I Brake Refurbish I 
I IVA/EVA (Brake) I 
I I 

I I 

I T o t a l  LCC 1$21390.40M 

I .61.50 
I 
I 16574.60 
I 317.60 
I 35.90 
I 235.70 
I 3973.00 

j 9::;::: 

I 818.70 
I 491.70 
I 230.90 
I 80.90 

1$17952.60M 
I 

j - $ ~ o . ~ o M  i 
I -58.30 I 
I -12.30 I 
I I 
I -3.40 I 
I I 
I 3512.00 I 
I -106.00 I 
I I 
I I 
I -822.00 I 
I -71.30 I 
I 4680.50 I 
I I 
I 61.60 I 
I 80.90 I 
I -230.90 I 
I -80.90 I 
I I 
I $3437.80M 1 

TABLE 2.1-2 COST PER FLIGHT 

I A l t e r n a t i v e  I Cost Per  F l i g h t  I Cost Per  F l i g h t  I 
I I (Constant $1 I (Discounted $1 . I 

I I 
I All-propulsive I $9 7M 
I I 
I A e r o a s s i s t  
I 

I $86M 
I 

I I 
I $15.8M I 
I I 

I 
I $14.4M 

I Competition I $123M I $22.7M I 
I I . I  I 

I f  t he  two OTV concepts prove t o  be c o s t  e f f e c t i v e  over the e x i s t i n g  Centaur 
conf igu ra t ion ,  they c e r t a i n l y  w i l l  be c o s t  e f f e c t i v e  over a more expensive 
upgraded Centaur conf igu ra t ion  r equ i r ed  f o r  some of the missions i n  the  OTV 
mission model. 

A b e n e f i t  a n a l y s i s  is shown i n  present  va lue  i n  Table 2.1-3. The value 
shown f o r  th i s  a n a l y s i s  r e p r e s e n t s  t he  c o s t  advantage, o r  b e n e f i t ,  the  
a l t e r n a t i v e  concepts hold over t he  competit ion.  
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TABLE 2.1-3 BENEFIT ANALYSIS (PV) 

I I I I 1 I 
I A l t e r n a t i v e  I Cost P e r  F l i g h t  I Cost Per F l i g h t  I No I I 
I I Competition I Option I F l i g h t s  I Benefit  I 
I I (Discounted $1 I (Discounted $) I I (Disc.$)! 

I I 
I All-propulsive I (22.7M 15.8M) x 389 = 2684 I 
I 

I 
14 .OM) x 389 - 3384 I 

I I 
I Aeroass i s t  I (22.7M 
I I I 

- 
- 

A r e t u r n  on investment (ROI) c a l c u l a t i o n  is shown i n  Table 2.1-4 which 
f a c t o r s  i n  DDT&E t o  provide a b e n e f i t  t o  investment r a t i o .  

TABLE 2.1-4 RETURN ON INVESTMENT (Pv)  

l a  

I I I I I I I I 
I A l t e r n a t i v e  (Cost P e r  F l i g h t  ICost P e r  F l i g h t  I No IDDTCE I I I  

I I (Discounted $1 I (Discounted $) I I $> I I I 
I I I 

I I I 

I I Competition I Option IF l igh t s  I(Disc IAdj. lR01 I 

I All-propulsive I ((22.7M - 15.8M) x 389 / 1775.8M)- 1 ~ 2 . 5  I 

I Aeroass i s t  I ((22.7M - 14.OM) x 389 / 1819.9M)- 1 =3.1 I 

2.1.5 Al t e rna t ive  Comparison 

An a l t e r n a t i v e  comparison is shown in Table 2.1-5. To a i d  i n  eva lua t ing  
each economic f a c t o r ,  a score is provided a t  the bottom of the t a b l e .  A value 
of 10 is given t o  the best  opt ion f o r  each economic f a c t o r  and a proport ionate  
value is given t o  the other  option. 

Figure 2.1-2 provides a graphic  view showing the payback d i f f e rence  
between the two a l t e r n a t i v e s .  
break even point  and a g r e a t e r  b e n e f i t  over the pos tu l a t ed  l i f e  of the mission 
model. 

The a e r o a s s i s t  opt ion provides both an  ear l ier  
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TABLE 2.1-5 ALL-PROPULSIVE VS AEROASSISTED COMPARISON (pv> 

I Economic I All-Propulsive I Aeroas s is  t I 
I Fac to r  I I I 

I Benef i t  I 2684 I 3384 I 
I I 

3.1 I 
I (Discounted $) I 

I 2.5 I 
I I I 
I 775.8 I 819.9 I I Investment 

I (Discounted $) I I I 
I I 
I Score I I I 

I Rol 

I 
I Benef i t  
I 

I Investment 
I Rol 

I 
I 7.9 
I 
I 8.1 
I 
I 10 

I 
I 10  
I 
I 10  
I 
I 9.5 

2.1.6 Conclusion 

The a e r o a s s i s t e d  concept provides t h e  g r e a t e s t  economic advantage of the  
two opt ions  in both the  ground based and space based modes of operat ion.  In 
t h e  ground base mode of opera t ion ,  t he  a l l -propuls ive  concept is not  f e a s i b l e  
i n  t h a t  p rope l l an t  requi red  t o  f l y  a GEO mission both exceeds the  OTV 55,000 l b  
capac i ty  of the OTV tanks and t h e  STS 72 k l b  payload l i f t  capaci ty .  
a d d i t i o n a l  STS f l i g h t s  requi red  t o  s e r v i c e  payloads exceeding the S h u t t l e  l i f t  
c a p a b i l i t y  would d r i v e  a l l -propuls ive  c o s t s  - w e l l  beyond the  a e r o a s s i s t  
ope ra t ions  cos t s .  

The 

I n  t h e  space based mode of opera t ions ,  the investment cos t  of both opt ions  
is reasonably a f fordable .  The economic ana lys i s  f o r  both b e n e f i t  and r e t u r n  
on investment show a e r o a s s i s t  t o  be the  winner. A payback ana lys i s  a l s o  shows 
the  a e r o a s s i s t  concept t o  have a n  earlier payback and g r e a t e r  o v e r a l l  r e t u r n  
over t he  f u l l  term of the  mission model. 

The conclusion of t he  t r ade  s tudy is t he re fo re  t o  select the  a e r o a s s i s t  
concept over t he  a l l -propuls ive  concept. 
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2.2 OTV Engine Trade Study 

The purpose of t h i s  t r a d e  study is t o  s e l e c t  an O r b i t a l  Transfer  Vehicle 
(OTV) cryogenic engine which provides optimum b e n e f i t s  under Revision 8 of the 
Marshall Space F l i g h t  Center (MSFC) Mission Model. A t  mid-term, when c o s t  
ana lys i s  were based upon the 453 f l i g h t s  of the Revision 7 Nominal Mission 
Model, s tudy r e s u l t s  showed t h a t  a $350M investment cos t  w a s  j u s t i f i e d  t o  
develop an  advanced engine with an I s p  of 483 seconds. This  study reexamines 
the economic impact of t he  engine t r ade  using the much more modest Revision 8 
Low Mission Model which p o s t u l a t e s  only 145 f l i g h t s  over the 1 2  year  l i f e  of ' 

t he  mission model. 

2.2.1 Approach 

The following s t e p s  are used i n  conducting this t r a d e  study. 

o I d e n t i f y  engine a l t e r n a t i v e s  
o I d e n t i f y  p rope l l an t  c o s t s  by year f o r  each a l t e r n a t i v e  

00 Compute p rope l l an t  consumption 
00 Compute p rope l l an t  cos t  i n  constant  and present  value d o l l a r s  

I d e n t i f y  engine replacement cos t  by year f o r  each a l t e r n a t i v e  
00 Compute the  number of engine replacements required 
00 Compute engine replacement cos t  i n  constant  and present  value 

d o l l a r s  
Compute combined propel lant  and engine replacement c o s t s  
Compute c o s t  of e x i s t i n g  engine (competit ion) 
Compare engine a l t e r n a t i v e  with the competition and with one another 

o 

o 
o 
o 

2.2.2 Groundrules and Assumptions 

The following ground r u l e s  and assumptions are used f o r  t h i s  t r a d e  study: 

o 1985 d o l l a r s  
o 
o Present  value: 

P rope l l an t  cos t  del ivered t o  LEO is $1,500 per pound 

I n f l a t i o n :  0 percent 
Discount: 10 percent 

o C o s t  t o  deliver engine to LEO: $6.8M (54" Cargo Bay l eng th  charged 
per ground rules a t  time t r a d e  conducted) 

Engine competition: 
RL 10A-3-3A 
ISP : 440 seconds 
Life:  One hour 
Unit cost:  $1.5M 

To GEO: 12.4 k l b  payload 
Return: 2.4 klb payload 

o Typical mission 
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2.2.3 A l t e r n a t i v e s  

Three developmental engines are used t o  form d i f f e r e n t  engine s t r a t e g i e s  
t h a t  serve as the a l t e r n a t i v e s  used i n  t h i s  study. F i r s t  the engine types 
w i l l  be discussed followed by the a l t e r n a t i v e  s t r a t e g i e s .  

The th ree  developmental engines are the EU10-IIB, an  i n i t i a l  ope ra t iona l  
c a p a b i l i t y  ( I O C )  engine,  and an  advanced engine. The e x i s t i n g  RL10A-3-3A 
engine is a l s o  used a s  the "competition" t o  serve a s  the base l ine  t o  determine 
the  p r o f i t a b i l i t y  of each developmental engine. 
information on these engines is shown i n  Table 2.2-1. 

Basic c o s t  and performance 

The RL10-IIB engine r ep resen t s  a low r i s k  development which improves the  
performance of e x i s t i n g  engine technology ( i .e . ,  the  technology used by the 
RtlOA-3-3~ engine).  

The I O C  engine uses  an advanced technology, new cycle  engine which 
possesses a n  I s p  approximately equal  t o  the  p r a c t i c a l  l i m i t  of the e x i s t i n g  
technology engines (e.g. RLlOA-3-3A and RL10-BII engines).  
r e a l i t y  is an  intermediate  s t ep .  It provides improved e f f i c i e n c y  without 
r e q u i r i n g  f u l l  development t o  the expected p o t e n t i a l  of the new cycle  engines. 

The I O C  engine i n  

The advanced engine possesses an I s p  near the expected l i m i t  of the new 
cycle  eng ines . ,  This engine w i l l  be the  most e f f i c i e n t  i n  terms of p rope l l an t  
consumption. 

The a l t e r n a t i v e s  s e l e c t e d  f o r  t h i s  study are formed by using these engines 
i n  d i f f e r e n t  combinations f o r  ground based (GB) and space based (SB) 
operat ions.  These a l t e r n a t i v e s  are: 

o Al t e rna t ive  1. RL10-IIB engine GB t o  advanced engine SB. 
0 A l t e r n a t i v e  2. I O C  engine GB t o  advanced engine SB. 
o A l t e r n a t i v e  3. Advanced engine f o r  both GB and SB. 
o Al te rna t ive  4. RL10-IIB f o r  minimum c e r t i f i c a t i o n  f o r  both GB and SB. 
o Al t e rna t ive  5 .  I O C  engine f o r  both GB and SB. 
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TABLE 2.2-1 ENGINE COST AND PERFORMANCE DATA 

I I THRUST I I DDT&E I U N I T  COST1 I 
I ENGINE I ( K L B  I ISP )(CONSTANT I(C0NSTANT I LIFE I 

I FORCE) I (SEC) I $M) I $M/ENG) I (HRS) t 
I 15  1 4  60 I 98 .2 I 1.9 1 5  I 

I 
I RLlO-IIB 
I I I I I I I 
I I n i t i a l  I I I I I I 

I 475 I 175 I 2.85 I 5 I 
I I I I I 
I I I I I 

I Operat ional  
I Capab i l i t y  

I Advanced I 7.5 I 483 I 3  50 I 3.0 I 1 0  I 
I 

I I I I I I I 
I FU 108-3-3A I 16.5 I 44 0 I 0 I 1.5 I 1.25 I 

I 7*5 
I 

2.2.4 Cost of A l t e rna t ives  

2.2.4.1 Propel lan t  Cost 

P rope l l an t  requirements are determined f o r  each engine by f l y i n g  an  
average GEO mission o n  a s imula t ion  model us ing  a 12.4 k l b  up payload and a 
2400 l b  down payload, A 45 k l b  propel lan t  tank capac i ty  is used f o r  ground 
based missions and a 55 k l b  propel lan t  tank capac i ty  i s  used f o r  space based 
missions.  Burnout weight f o r  t h e  45 k l b  vehic le  is 5,689 l b  and f o r  t he  55 
k l b  veh ic l e  is 8,090 l b .  

P rope l l an t  requirements f o r  t h i s  mission, as ca l cu la t ed  by a f l i g h t  
s imula t ion  model, are shown f o r  each type of engine i n  Table 2.2-2. Table 
2.2-3 provides  a summary of propel lan t  weights and de l ive ry  c o s t s  f o r  each 
engine.  The p rope l l an t  requirements are extended over the  du ra t ion  of the  
Revis ion 8 Low Mission Model. Propel lan t  de l ive ry  is f igured  a t  $1,50O/lb. 

2.2.4.2 Engine Replacements 

Engine replacement cos t  ca l cu la t ions  are based upon t h e  u n i t  c o s t  of 
Cos t  f o r  engine i n s t a l l a t i o n  and checkout are included i n  the  the engine. 

u n i t  cos t  p r i c e ,  The frequency of engine replacement i s  based upon the burn 
time requirement of t he  missions and the  l i f e  expectancy of the  engine. 
2.2-4 summarizes engine replacement cos t s .  

Table 

2.2.4.3 To ta l  Costs  

Engine replacement and p rope l l an t  c o s t s  from Tables 2.2-3 and 2.2-4 
are summarized i n  Table 2.2-5. DDT&E c o s t s  are shown i n  Table 2.2-6. 

T o t a l  c o s t  f o r  t h e  competit ion engine,  RLlOA-3-3A, are ca l cu la t ed  t o  
be as follows: 

o T o t a l  Cost (Constant $1 $10,662 .OM 
o T o t a l  Cost (PV $1 $ 2,302.4M 
o Cost per  F l i g h t  (PV $1 $ 73.5M 
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e 
The competition cost estimates, along with the engine operations cost 

summarized in Table 2.2-5 and engine DDT&E costs shown in Table 2.2-6 are used 
in the economic analysis calculations in paragraph 2.2.4.4 below. Note that 
the DDTtE cost of Alternative 1, in constant $, is the sum of Alternatives 3 
and 4. The DDT&E cost of Alternative 2, in constant $, is increased $65M over 
Alternative 3 because of the stretched out, two step nature of the program. 

TABLE 2.2-2 PROPELLANT REQUIREMENTS 

I VEHICLE I PROPELLANT REQUIRED I 
45,000 I 55,000 I 

I (LB) 1 I PERFORMANCE I (LB) 
I RL 10-IIB I 

I ENGINE TANK SIZE I 

I 460 Isp 
I IOC 
I 475 Isp 
I Advanced 
I 483 Isp 
I RL 10A-3-3A 
I 440 ISP 

44,997 I 49,746 I 
I I 

43,615 I 45,613 I 
I I 

41,370 I 38,896 I 
I I 

50,104* I 52,400 1 
I I I I 

* Used to price 'competition', not a viable candidate 

TABLE 2.2-3 PROPELLANT COST (REVISION 8 LOW MISSION MODEL) 

I Alternative/ I Propellant in 

I I GB SB 

I Alternative 1 I 
1 RL 10-IIB I 1.6 

I MLB 

I 

I Advanced. I 4.3 
I I 
I Alternative 2 I 
I IOC I 1.5 
I Advanced I 4.3 
I I 
I Alternative 3 I 
I Advanced I 1.4 
I Advanced I 4.3 
I I 

I RL 10-IIB I 5 '5 
I I 

I IOC I 5 .o 

I Alternative 4 I 
I RL 10-IIB I 1.6 

I Alternative 5 I 
I I O C  I 1.5 

Propellant Del I Total I 
Cost ($M PV) I Combined I 
GB SB I Cost ($M PV) I 

I I 
I 

835 I 
1009 I 

I 
I 

809 I 
1009 I 

I 
I 

7 58 I 
1009 I 

I 
I 

835 I 
I 
I 

809 1 
1200 I 

1291 I 

I 
1844 I 

I 
1818 I 

I 
I 

17 67 I 
I 
I 
I 

2126 1 
I 
I 
I 

2009 I 
I 

24 



TABLE 2.2-4 ENGINE REPLACEMENT COST (REVISION 8 LOW MISSION MODEL) 

I Alternative I Engine I Engine I Total I 
I I Replacements I costs I Combined I 

I I GB SB I GB SB I I 
I I 1 I I 

I I 
9.18 I 

I Alternative 1 I I 
6 1  7.28 I I 

I I I I I 
I Alternative 2 I I I I 
I IOC 1 3  I 2.93 I 10.21 I 
I Advanced I 6 1  7.28 I I 

I I I I I 
I I 
I 10.21 I 

I Alternative 3 I I 

I Advanced I 6 1  7.28 I I 
I I I I I 

I I 
I 17.15 I 

I Alternative 4 I I 
I RL10-IIB 1 3  I 1.95 
I a10-IIB I 10 I 15.2 I I 

I I I I I 
I I 
I 19.63 I 

I Alternative 5 I I 

I 12 I 16.7 I I 

I I I ($M PV) I Costs ($M PV) I 

I 1.95 I l 3  I RLlO-IIB 
I Advanced 

I Advanced 1 2  1 2.93 

I IOC 1 3  I 2.93 

I IOC I I I I 
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TABLE 2.2-5 ENGINE OPERATIONS COSTS ($M pv) 

I I I Engine I I 
I Alternative/ I Propellant I Replacement I Total I 
I Engine I cost I cost I costs I - 
I I I I I 
I I I I I 
I Alternative 1 I 1844 I 9.18 
I RL10-IIB (GB) I I 
I Advanced (SB) I I 
I I I 
I Alternative 2 
I IOC (GB) 
I Advanced (SB) 

I Alternative 3 
I Advanced (GB) 
I Advanced (SB) 

I Alternative 4 

I 

I 

I RL10-IIB (GB) 
I RL10-IIB (SB) 

I Alternative 5 
I IOC (GB) 
I IOC (SB) 
I 

I 

I 1818 
I 
I 
I 
I 
I 
I 

I 
I 
I 

I 
I 
I 

I 1767 

I 2126 

I 2009 

I 10.21 
I 
I 
I 
I 10.21 
I 
I 
I 
I 17.15 
I 
I 
I 

I 
1 19.63 

1853 I 
I 
I 
I 

1828 I 
I 
I 
I 

17 67 I I 
I I 

2143 I 
I 
I I 

20 29 I 
I 
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TABLE 2.2-6 

I 
I ALTERNATIVE 

I 
I A l t e r n a t i v e  1 
I RL1O-IIB (GB) 
I Advanced (SB) 

I A l t e r n a t i v e  2 
I I O C  (GB) 
I Advanced (SB) 

I A l t e r n a t i v e  3 
I Advanced (GB) 
I Advanced (SB) 

I A l t e r n a t i v e  4 
I RL10-IIB (GB) 
I RL10-IIB (SB) 

I 

I 

I 

I 
I A l t e r n a t i v e  5 
I IOC (GB) 
I I O C  (SB) 

ENGINE DDTCE ($M PV) 

I 

Const $ I PV 
I 

$448.2M I $258.7M 
I 
I 
I 

I 
I 
I 

I 
I 
I 

I 

415. I 254.8 

350. I 251.1 

98.2 I 70.2 

175. I 125.1 
1 -  

2.2.4.4 Economic Analysis 

A b e n e f i t  a n a l y s i s  i s  shown i n  Table 2.2-7 f o r  each engine option. 
This a n a l y s i s  is based upon the algorithm: Competition Operations Cost - 
Engine Operations Cost = Benefi t .  Table 2.2-7 shows the  g r e a t e s t  ope ra t iona l  
b e n e f i t ,  not including development c o s t ,  comes from the use of the advanced 
engine. 

. 

A Return on Investment (ROI) a n a l y s i s  i s  shown i n  Table 2.2-8 f o r  each 
engine option. 
benefit by the investment (DDTCE) costs. This algorithm is: 

This  a n a l y s i s  provides a best  buy rates by d iv id ing  the 

Competition Operations Cost - Engine Operations Cost - 1 = ROI 
Investment 

The g r e a t e s t  ROI  i s  o f fe red  by the RL-10 engine,  with the I O C  engine second. 

The pay back economics f a c t o r  r ep resen t s  the number of missions required 
t o  amortize the  DDTCE investment f o r  each engine opt ion (Table 2.2-9). 
2.2-10 i d e n t i f i e s  the number of missions required before  the  payback 1s 
r e a l i z e d .  The algorithm used is: 

DDTCE Cost = Number of f l t s  

Table 

where CPF, = c o s t / f l t ,  competition 
CPF, - CPF, t o  pay back CPF, = c o s t / f l t ,  engine opt ion 

The earliest investment pay back i s  achieved with the RLlO d e r i v a t i v e  engine, 
with the I O C  engine second. 
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TABLE 2.2-7 ENGINE TRADE B E N E F I T S  ($M P V )  

I 
OPTION I 

I 
I 

1 1 2302 - 1853 I 449 
RLIO/ADV I 

2 I 2302 - 1828 P 474 
I 

IOC/ADV I 

3 I 2302 - 17 67 = 5 35 
I 

ADV/ADV I 
I 

159 I 
I 

4 I 
RLlO/RLlO I I 

I 
5 I 2302 20 29 273 I 

I 

IOC/IOC I I 

COMPETITION O P S  COST - OPTION O P S  COST = B E N E F I T  

2302 - 2143 = 

- 

TABLE 2.2-8 ENGINE TRADE R O I  

I I I 
I I B E N E F I T S  ( P V )  -1 ROI I 
I OPTION I DDT&E (PV)  I 
I I I 
I I I 
I 1 
I RL~O/ADV 

I 2 
I IOC/ADV 
i 
I 3 
I ADV/ADV 

44 9 I - - 1 = 0.73 I 258.7 
I 
I 474 - 1 = 0.86 
I m  

5 35 I - - 1 = 1.13 I 251.1 
I 

15 9 I - - 1 = 1.26 I 4 
I RLlO/RLlO I 70.2 
I I 
I 5 
I IOC/IOC I 
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TABLE 2.2-9 PAYBACK - MAIN ENGINE 

I 1 I 
I OPTION I MISSIONS I 
.I I I 
I I I 
I 1 I I 
I 1 R L ~ O / A D V  I a3 I 
I 
I 2 
I 2 IOC/ADV I 78 I 

I I 
3 I I 

I 
I 
I 3 ADV/ADV I 68 I 
I I 1 
I 4 I I 
I 4 RLlO/RLlO I 64 I 
I I I 
I 5 I ' I  
I 5 IOC/IOC I 66 I 

Figure 2.2-1 provides a graphic po r t r aya l  of each engines payback 
vis-a-vis t h e  competitfon. It a l s o  shows a comparison of the payback among 
t h e  engine opt ions.  
b e n e f i t  over the 145 mission planning horizon. 
engine having a quicker payback but providing the least  advantage over the 145 
mission scenario.  

This f i g u r e  shows the advanced engine providing the most 
It a l s o  shows t h e  RL10-IIB 
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2.2.5 Al t e rna t ive  Comparison 

Table 2.2-10 provides a comparison of the economic ana lys i s  f a c t o r s .  Each 
A l l  f a c t o r s  should f a c t o r  provides a d i f f e r e n t  measurement of economic merit. 

be weighted ind iv idua l ly  and together  t o  determine the  bes t  engine 
a l t e r n a t i v e .  To a i d  t h i s  comparison, a scoring is provided where the most 
favorable  a l t e r n a t i v e  is given a 10 and the other  a l t e r n a t i v e  a value in 
r e l a t i o n  t o  the a l t e r n a t i v e  scored 10. 

TABLE 2.2-10 ENGINE TRADE RESULTS 

I ECONOMIC I RL~O/ADV I IOC/ADV IADV/ADV I R L ~ O / E ~ O  I IOC/IOC I 
FACTOR I 1  1 2  1 3  I 4  1 5  I I 

I I I I I I I 
I I I I I I I 

ROI (PV)* I 0.73 I 0.86 I 1.13 
Benefi ts  (PV) * I 449.0 I 474.0 I 535.0 
Investment (DDT&E) (PV)* I 258.7 I 254.8 I 251.1 
LCC (PV)* I 2112.0 12083.0 12018.0 
Payback Missions . I 83 I 78 I 68 
Cost per F l i g h t  (PV>* -1 59.1 I 58.4 I 55.1 

I I I 

1.26 I 1.18 I 
159.0 I 273.0 I 

70.2 I 125.1 I 
2213.0 12154.0 I 

64 I 66 I 
66.2 I 62.2 I 

I I 
I *  Mil l ions of d o l l a r s  ($MI I I I I I I 
I I I I I I I 
I SCORE I 
I I 
I I 1 I I I I 
I ROI I 5.8 I 6.8 I 9.0 I 10.0 I 9.4 I 
I Bene f i t s  I 8.4 I 8.9 I 10.0 I 3.0 I 5.1 I 
I Investment I 2.7 I 2.8 I 2.8 I 10.0 I 5.6 I 
I LCC I 9.6 I 9.7 I 10.0 I 9.1 I 9.4 I 
I Payback Missions I 7.7 I 8.2 I 9.4 I 10.0 I 9.7 I 
I Cost per F l i g h t  I 9.3 I 9.4 I 10.0 I 8.3 I 8.9 I 
I I I I I I I 

2.2.6 Conclusion 

The engine t r ade  sco res  i n  Table 2.2-10 show mixed r e s u l t s .  A l t e rna t ive  4 
[RLlO-IIB ( G B ) / R L l O - I I B  (SB)] s co res  high on investment and payback missions. 
R O I  is a l s o  scored high f o r  a l t e r n a t i v e  4 ,  but t h i s  f i g u r e  I s  tempered by the 
r e l a t i v e l y  low bene f i t .  
d i sp ropor t iona te ly  low vis-a-vis t h e  other  a l t e r n a t i v e s .  

The b e n e f i t s  score f o r  a l t e r n a t i v e  4 i s  

A l t e r n a t i v e  3 [ADV (GB)/ADV (SB)] scores  high on b e n e f i t s ,  cos t  per  
f l i g h t ,  and l i f e  cycle  c o s t ,  however the r i s k  a s soc ia t ed  with this a l t e r n a t i v e  
is g r e a t e r  than the o t h e r  a l t e r n a t i v e s  s i n c e  i t  calls f o r  the highest  I s p  
(483) and embarks on a new technology high performance engine. 
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Al te rna t ive  5 [ I O C  (GB)/IOC (SB)] r ep resen t s  a good compromise. A l l  
economic f a c t o r s  except LCC f a l l  between a l t e r n a t i v e s  3 and 4 i n  scoring. 
A l t e r n a t i v e  5 does not  have as g r e a t  a r i s k  as a l t e r n a t i v e  3 and can serve as 
a s t epp ing  s tone t o  the more e f f i c i e n t  advanced engine. By s t a r t i n g  out  with 
the same engine f o r  ground based operat ions,  experience and g r e a t e r  confidence 
w i l l  be r e a l i z e d  i n  the engine €or i n i t i a l  space based operat ions and later 
f o r  man-rated operat ions.  

The conclusion of t h i s  study is t h a t  the IOC engine should be developed 
f o r  both ground based and space based OTV operat ions.  
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2.3 Man Rating and R e l i a b i l i t y  Trade Study 

The ob jec t ive  of this study is t o  e s t a b l i s h  d a t a  t o  permit t he  s e l e c t i o n  
of a man-rating pol icy and then t o  implement t h a t  pol icy i n  the OTV 
configurat ions.  
a l s o  the ob jec t ive  of the study t o  de f ine  the  redundancy configurat ion of 
unmanned OTV concepts. This s t e p  i n  t h e  OTV concept d e f i n i t i o n  is c r u c i a l  
s i n c e  i t  e s t a b l i s h e s  the equipment lists and thereby has  major inf luence of 
design and weight. 

The mission model is dominated by unmanned missions so i t  i s  

2 .3.1 Approach 

The following approach is used i n  the  ana lys i s .  

o E s t a b l i s h  cos t  d a t a  t o  permit d e f i n i t i o n  of a man-rating policy.  

o Incorporate  redundancy needed t o  meet the  po l i cy  i n  the  manned OTV. 

o Configure the unmanned OTV redundancy t o  be c o n s i s t e n t  with c u r r e n t  
expendable s tages .  

The f i r s t  s t e p  i n  the  approach e s t ab l i shed  the  s e n s i t i v i t y  of l i f e  cycle  
The f a i l u r e  p o l i c i e s  considered are shown 

I n  t h i s  a n a l y s i s ,  368 GEO d e l i v e r y  mission are used and the  
c o s t  t o  var ious f a i l u r e  p d l i c i e s .  
i n  Table 2.3-1. 
space based cryogenic r e fe rence  configurat ion se rves  as the b a s i s  f o r  
c h a r a c t e r i z i n g  the  configurat ions f o r  each f a i l u r e  pol icy.  
complement of t h e  r e fe rence  configurat ion i s  adjusted through a func t iona l  
F a i l u r e  Modes E f f e c t s  Analysis (FMEA) t o  be cons i s t en t  with the f a i l u r e  
p o l i c i e s .  This  means examining t h e . F a i l u r e  Modes i n  each f l i g h t  phase, 
determining i f  a f a i l u r e  met the po l i cy  and, i f  n o t ,  adding redundancy u n t i l  
t h e  po l i cy  is  s a t i s f i e d .  

The equipment 

Step two reexamines the  reference configurat ion through a FMEA t o  
s p e c i f i c a l l y  meet the s t a t e d  man-rating policy.  

Step t h r e e  determines t h e  consistency of the redundancy po l i cy  with 
c u r r e n t  expendable r e l i a b i l i t y  capab i l i t y .  

TABLE 2.3-1 MAN-RATING POLICY CONCEPTS 
~ ~ 

1- ~ 1 I 

I I I 
I I I 
I Single S t r i n g  I 0 I 
I I I 

I Concept I F a i l u r e  Tolerance I Remarks 

I F a i l  Safe 
I 
I 
I 

1 I Assumes a rescue I 

I I 
I c a p a b i l i t y  i s  ava i l -  I 
I a b l e  f o r  man-rating. I 

I F a i l  Operat ional /Fai l  Safe I 2 I 
I I I 

I 
I 
I 

I F a i l  Operat ional /Fai l  I 3 I 
I 
I 

I Operat ional /Fai l  Safe I 
I I 
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2.3.2 Ground Rules 

The following ground r u l e s  are used i n  the  man-rating analysis :  

o Reference Missions (Rev 7 Nominal Mission Model) 

o 

o 

14 manned 14 k l b  up, 14 k l b  down GEO s e r v i c i n g  missions. 

354 unmanned 12,445 l b  up, 4,711 l b  down GEO s e r v i c i n g  missions.  

o Mission duration: 480 hours manned missions 
51 hours unmanned missions 

o Reference OTV design 
Space based c ry0  - (Figure 2.3-1) 
Single  engine configurat ion 15 k l b  t h r u s t  478.6 I s p  
Dua l  engine configurat ion 7.5 k l b  t h r u s t  471.3 I s p  
Three engine configurat ion 5 k l b  t h r u s t  475.8 I s p  

2.3.3 Analysis 

This  s e c t i o n  documents t h e  r e s u l t s  of the i n v e s t i g a t i o n s  t o  e s t a b l i s h  
manned and unmanned redundancy f o r  the candidate OTV concepts. 

2.3.3.1 Man Rating Pol icy 

The redundancy required t o  implement the fou r  f a i l u r e  p o l i c i e s  i s  
shown i n  Table 2.3-2 together  with the computed r e l i a b i l i t i e s .  These da t a  
form the  b a s i s  f o r  cha rac t e r i z ing  conceptual cry0 s t ages .  
were sketched and weight statements (Table 2.3-3) were developed. These d a t a  
are used f o r  performance a n a l y s i s  t o  determine p rope l l an t  required t o  capture  
the  GEO missions.  
and 2.3-5. The performance and the design da ta  form the b a s i s  of the l i f e  
cycle  c o s t  a n a l y s i s  shown i n  Table 2.3-6 and Figure 2.3-2. It is noted t h a t  
p rope l l an t  requirements r e s u l t i n g  from s t age  weight dominates t h e  LCC 
d i f f e rence  and t h a t  progression from s i n g l e  s t r i n g  t o  F a i l  Operat ional ,  F a i l  
Operational,  F a i l  Safe i s  exponent ia l  i n  cos t  of mission capture .  

Feasible  l ayou t s  

The r e s u l t i n g  performance d a t a  i s  presented i n  Tables 2.3-4 
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TABLE 2.3-2 FAILURE POLICY EQUIPJ4ENThELIABILITY ALLOCATION 

RELIABILITY DATA RELIABILITY DATA RELIAB I L  I T Y  DATA RELIABILITY D A T A  
U T V  O T V  O T V  O T V  

SINGLE STRING FAIL SAFE OPS SAFE UPS OPS SAFE 

COMPONENT OUANTITY RELIABILITY OUANTITY RELIABILITY OUANTITY RELIABILITY OUANTITY RELIABILITY 

S t r u c t u r e  1 
LO2 l a n k  2 
LH2 Tank 2 
L ines  & F i t  1 
Hain Engine 1 
TVC Act 2 
SOL Valves 1 
OD's I?  
Check Valves 2 
F i l t e r s  4 
Therro VT 4 
PU Valve 2 
PNEU Valve 2 
ELE I / F  SS 4 
ACS Engine 4 
6H2 Tank 2 
602 Tank 1 
L ines  & F i t  1 
SOL Valves 8 
OD's 17 
Check Valves 2 
Reg's 2 
HX 1 
Turbo PUDP 1 
Aero ACTS 6 
Fuel  C e l l s  1 
Rad ia to rs  1 
FC Pover Cond 1 
S ta r  Tracker 1 
I nu 1 
Corpu t e r  1 
F l i g h t  Con t ro l  1 
JLH Power Supply 2 
CHD 6 Data H d l r  2 
Transponder 2 
RF A m p l i f i e r  1 
GPS Receiver 1 
6PS Antenna 1 
Sequencer 1 
Deploy T i r e r  1 
B a t t e r y  I 
Hotor  S u i t c h  3 
Steer  Antenna 2 
Diplewer  2 
Heteor S h i e l d  1 
Wi r i ng  1 

0.9??5201150 
0. ???5660?30 
0. Y??S660?30 
0.??95201150 
0 .?603000000 
0.99P1747400 
0. ?'?06263370 
0.???0664160 
0. Bir30404610 
0.??99136040 
O.?SPXl76150 
0.9907312220 
0.?90731?2?0 
0.4???556410 
0.??96000000 
0.??95680?30 
0.???7840230 
0.?995201150 
0.9817368300 
0.5'941843330 
0 .??904046 10 
0.??43520100 
0. Y?85610360 
0.9966456380 
0.?646402?30 
O.P943267?0 
0.?995201150 
0.?952115020 
0. ??0445?330 
0.9531337870 
0. P531337870 
0.?95?115020 
0.99~4900000 
0.9P94100000 
0.99?9100000 
0.99521 15020 
0. ??521150?0 
O.P???5L8010 
0.9952115020 
0.??52115020 
0.9931 595030 
0 .9657031640 
0. ??~?900000 
O.?Y90404610 
0.??95201150 
0.9?52115020 

I 
2 
2 
1 
1 
2 
4 

I ?  
4 
6 
4 
2 
2 
4 
4 
2 
1 
1 
16 
26 

4 
4 
1 
2 
6 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
1 
1 
2 
1 
1 
3 
2 
2 
1 
1 

0 .???5201150 
0. ???5680?30 
0.???5680?30 
0.???5201150 
0.?603000000 
0. ???1747400 
0.???0786240 
0. ?9?0864160 
0. ?9806164?0 
0. ???9567?90 
0. Y956613670 
0 .??07312220 
0. ??07312220 
0.????556410 
0.9762151370 
0. ?9?5660930 
0. y3Y 7840230 
0.???5201150 
0.9999336300 
0.??&7527760 
0.??80818420 
0. ?9????6390 
0. 9965610360 
0.????964300 
0.9646402?30 
0.??4?7267?0 
0.9995201 150 
0.??52115020 
0.????087190 
0.9978035580 
0.9978035580 
0. ??4?7!0700 
0.99???85610 
0. ????770700 
0.9??90871?0 
0. ???9770700 
0.99521 15020 
0 .?9?9566010 
0. ????770700 
O.?Y52115020 
O.??3l5?5030 
0. 9994241660 
0.???9983220 
0.???0404610 
0.???52011 so 
0.?9??770700 

1 
2 
2 
1 
2 
4 

-10 
23 
8 
6 
8 
2 
4 
4 
4 
2 
I 
1 
24 
43 
4 
6 
2 
3 
6 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
2 
2 
2 
3 
2 
3 
6 
2 
2 
1 
1 

0.9995201 150 
0.9??5660930 
0.???5680?30 
0.?9?5201 150 
0.9996 1191 00 
0. ??????82?0 
0 .?????%?10 
0.9968?660?0 
0. ??6 1673630 
0.????567??0 
0 .?9??Y57040 
0.990731 2220 
0.9999995660 
0.????556410 
0.99?8560070 
0 .???5660930 
0.9997640230 
0.9995201150 
0. ?99?9??940 
0.??7?3S12?0 
0.99606 184 20 
0. ????????80 
0. ?9????97?0 
0. ??99?9??30 
0.9997523500 
0. ?????????O 
0.9????34?50 
0.?9??770700 
0.9??9??1270 
0. ?9?&?706 IO 
0.9??6?70610 
0. ?9???98?00 
0.99??9???80 
0.?999996900 
0. ?9???91270 
0. ???9?98900 
0. ??????8900 
0. ???99???80 
0.99?39?8?00 
0. ???9770700 
0.?99?532070 
0.???0404600 
0. ?????96320 
0 .???0404610 
O.??Y5201150 
0. ?9??770700 

I 0.??95201150 
2 0.???5680?30 
2 0. ??9S680930 
1 0.??52011500 
3 0 .??9?6?8680 
6 O.?????Y???O 

14 0.?9???9?960 
27 0.??870463?0 
I6 0. ?????9???0 
6 0. ?9???9???0 
12 0.9???~9p950 
2 0.??0:312220 
6 0. ???98?7??0 
4 0.??9?558410 
8 O.?9PP9?1360 
2 0. ???568O'?SO 
1 0.??97840230 
1 0.9995201150 
32 0. 9999999990 
60 0.??71?41430 
8 0.????999930 
6 0.9????????0 
2 0.???99792?0 
4 0. ?99??99?90 
6 0. ?9??9??8?0 
3 0.??9??????0 
3 0. ???99????0 
3 0. ???9?98?00 
4 0. 9???9???10 
4 0.?9?&?70610 
4 O.???8Y70610 
4 0. ????99??90 
4 O.??9??9?P30 
4 0. ?9????5620 
4 0. ?99?99??1 0 
3 0. ?9??9Y&?OO 
3 0.??????sp00 
3 0. ?9?Y????90 
4 0. ??9?P9???0 
2 0.??99770700 
3 0.??????67?0 
7 0.???99?7410 
3 0.????9???70 
2 0.???0404610 
1 0.??95201150 
3 0.9?????8?00 

TOTALS 0.7200587420 0.6636410530 0.9773308000 0 .?6 19766330 
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TABLE 2.3-3 CONFIGURATION RELIABILITY VS WEIGHT 
SPACE BASED CRY0 - 84 KLB PROPELLANT LOAD 

(Weight Lb) 

i I 
I S ingle  F a i l  FO/ 
I Descr ipt ion S tr ing  Safe FS FO/FO/FS I 
! I 
1 -  
I Orien ta t ion  Control 
I ACS Subsystem 
I Rocket Engine Modules 
I Accumulators 
I Mtg. Provis ions - REMs & Acc. 
I Conditioning Units/Mtg. Prov. 
I Valves, Sw.,  Mtg. Prov., etc.  
I Tubing & I n s t l .  
I Aerobrake Deployment 
I Actuators  
I Support S t r u c t .  & Attach 

I Electrical  
I Bat tery 
I Power Conversion & D i s t .  
I Fuel C e l l  System 
I Reactant Tank - GH2 
I Reactant Tank - GO2 
I Radiator System 
I Water System 
I Fuel C e l l  Pwr. Cond. 
I Mounting Provis ions 
I 

~ ~ ~ 

I 

I S t ruc tu re  
I Basic Airframe 
I LO2 Tank 
I LH2 Tank 
I Aerobrake 
I Aerobrake Doors - Engine 
I Boom - ACS REMs 
I Boom - Avionics 
1 P/L Attach ( 8 )  
I Mod. RMS Grapple F ix ture  
I 

I 
29 9 35 2 430 550 I 

227 280 35 0 478 I 
40 40 40 80 I 
62 62  62 62 I 
10 10 10 14 I 
46 65 106 125 I 
46 80 117 15 7 I 
23 23 23 40 I 

72  72  72  72 I 
48 48 48 48 I 
24 24 24 24 I 

I 

35 35 105 105 I 
150 l50 200 25 0 I 

45 45 90 135 I 
7 0  7 0  7 0  7 0  I 
45 45 45 45 I 
33  33 65 98 I 
25 25 25 25 I 

I 

44 3 44 3 66 0 801 I 

40 

3930 
631 
596 

1051 
1412 

140 
12 
23 
40 
25 

40 

3930 
631  
596 

1051 
1412 

140 
12 
23 
40 
25 

60 

39 69 
631  
596 
105 1 
1350 

241 
12 
23 
40 
25 

7 3  I 
I 

. 39921 
631 I 
596 I 

105 1 I 
1309 I 

305 I 
12 I 
23 I 
40 I 
25 I 

I 

Continued 
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TABLE 2.3-3 CONFIGURATION RELIABILITY VS WEIGHT SPACE BASED 
CRY0 - 84 KLB PROPELLANT LOAD (Continued) 

(Weight Lb) 

I I 
I Single F a i l  FO/ I 

Safe FS FO/FO/FS I 
I I 
1 I 

I Descript ion S t r i n g  

I Environmental Control 
I Thermal P ro tec t ion  
I LO2 Tank 
I LH2 Tank 
I 
I ACS Tanks 
I 
I Meteoroid P ro tec t ion  
I 
I Main Propulsion System 
I Engine 
I P rope l l an t  Feed System 
I Pneumatic System 
I P r e s s u r i z a t i o n  System 
I Vent System 
I Actuators  - Electrical 
I 
I Avionics 
I Avionics 
I Mounting Provis ions 

I Dry Weight 

Engine Truss/ Comp t . 
Prop. Lines ,  Comp., & etc.  

I 
I 

478 
58 

0 
0 

16 
10 
32 

4 20 

1015 
393 
195 
114 
99 

18 2 
32 

35 3 
3 21 
32 

6518 

478 
58 

0 
0 

16 
10 
32 

420 

1015 
393 
195 
114 
99 

182 
32 

489 
445 
44 - 
6707 

1006 
- 

7713 

5 06 
86 

0 
0 

16 
10 
60 

420 

14 37 
697 
201 
15 6 
12 3 
19  6 
64 

7 09 
645 
64 

m 
1157 
- 

8868 

534 I 
114 I 

0 I 
0 I 

16 I 
10 I 
88 I 

420 I 
I 

1643 I 
784 I 
208 I 
198 I 
147 I 
210 I 
96 I 

I 
924 I 

840 I 
84 I 

I Contingency (15%) 978 
I 
I 
I Total Dry Weight 7496 
I 

I 
-1 

I 

I 
I 

1267 I 
- 

9711 I 
I 
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Configuration: SB Cry0 Ref (Fig 2.3-1) 
Mission: Manned GEO Servicing 
Payload : Up 14 klb: Down 14 klb 

I I I I I I I 
I F a i l u r e  I Dry I I s p  I Thrust I No. I Prope l l an t  I Gross 

I I (Ib) I ( sec )  I (lb) I I (Ib) I (Ib) 
I I I I I I I 
ISingle S t r ing l  7496 I 478.6 I 15000 I 1 I 69526 I 91022 I 
I I I I I I I I 
I I 1 I 1 I I I 

I I I I I I I 
I I I I I I I I 

I FO/FS I 8868 I 476.3 I 7500 I 2 I 74526 I 97394 I 
I I I I I I I 
I I I I I I 1 

I 
I 
I FO/FO/FS I 9711 I 475.8 I 5000 I 3 I 77381 I 101092 I 

I Weight I e =  640:l) I Engine I Engine I Weight I Weight 

I 7713 I 478.6 I 15000 I 1 I 70209 I 91922 I lFail Safe 

I I I I I I I I 

TABLE 2.3-5 UNMANNED MISSION PERFORMANCE DATA 

Configuration: SB Cry0 Ref (Fig 2.3-1) 
Mission: Unmanned GEO Servicing 
Payload: Up 12445: Down 4711 

I I I 

I I I .  
I I I 

I I I 
I I 

I I I 

I I I 

/Single String1 7496 I 478.6 

/ F a i l  Safe I 7713 I 478.6 

I 8868 I 476.3 I Fo/FS I I 

1 FO/FO/FS I 9711 I 475.8 

I 
I 
I 
1 
I 
I 

7 
I 
I 
1 
I 
1 

I I I I 
I 38585 I 53816 I 

I I I I 
I I I I 
I I I I 
I I I I 

I I I I 
I I I I 

I I I I 

15000 I 1 

15000 I 1 I 39247 I 54694 I 

7500 I 2 I 43128 I 59730 I 

5000 I 3 I 45816 I 63261 I 
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TABLE 2.3-6 OTV RELIABILITY OPTIONS LCC (USING DELIVERED PROPELLANT) 
(1985 $B) 

DDTCE 

PRODUCTION 
I 

I REFURB 
I Manned 

I Unmanned 

I FLIGHT OPS 

I Manned 

1 .  Unmanned 

I 

I 

I 

I 

I 

I IVA 
I Manned 

I Unmanned 

I PROPELLANT 

I 
I 

I 

I Manned 
I Unmanned 
I 
I 
I 
I 

0.8 

0.3 

4.8 

2.1  

0.2 

30.7 

0.1 

4.7 

0.1 

2 .o 

0.004 

0.2 

1.3 

29.4 

I 
I 0.9 
I 

I O W 3  

I 5 - 6  
I 0.1 
I 
I 4.7 
I 
I 2.1 
I 
I 0.1 
I 
I 2 .o 
I 
I 0.2 
I 
I 0.004 
I 
I 0.2 
I 

1.3 I 
I 
I 29.9 
I 
I 

I 31*2 

I TOTAL COST I 38.9 I 40.3 
I I I 
I Manned I 1.5 I 1.6 
I I 

I I 
I Unmanned I 

I DDTCE - I 
I Produc- I 

I 

I 
1.1 I 

I 

36.3 I 

I F a i l  Op/ 
F a i l  Op Safe I F a l l  Op/ 

I F a i l  Safe  
I 

I 1.1 

0.4 I 0.6 

8.0 
I 

I 
I 

0.1 I 
I 

0.1 I 
I 

4.7 I 4.7 I 
I I 

I 
I 

0.1 0.1 I 
I 

2.0 I 2 .o 
I 

0.004 I 
I 

I 

I 2 * 1  

I O o 2  

I 36 *4  

2.1 

0.004 

0.2 

0.2 I 0.2 

1.5 

33.3 

1.4 I 
I 

32.9 I 34.9 I 
I I 
I I 
I I 
I I 

46.1 I 50.9 I 
I I 

1.7 I 2.0 I 
I I I 

37.5 I 42.4 I 47.1 I 
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These d a t a  r e s u l t e d  i n  the NASA e s t a b l i s h i n g  the following manned 
s a f e t y  policy: 

No s i n g l e  c r e d i b l e  f a i l u r e  s h a l l  preclude t h e  safe r e t u r n  of the crew. 

2 .3 .3 .2  Man-Rating Pol icy Implementation 

The F a i l u r e  Modes E f f e c t s  Analysis t o  implement the  man-rating pol icy 
r e s u l t e d  i n  the  redundancy shown i n  Table 2.3-7 .  
hour mission t h e  r e l i a b i l i t y  of the manned conf igu ra t ion  f a l l s  between t h e  
F a i l  Safe and the  F a i l  Operational,  F a i l  Safe concepts shown i n  Figure 2.3-2 .  
This  redundancy conf igu ra t ion  meets t h e  f a i l u r e  po l i cy  and provides a mission 
success p r o b a b i l i t y  t h a t  i s  judged t o  be acceptable  based on expected loss 
c o s t s .  Table 2.3-8 summarizes t h e  r e l i a b i l i t i e s  of the manned and s i n g l e  
s t r i n g  concept which meets the c r i te r ia  of being as good as cu r ren t  expendable 
s t ages .  
success .  A comparison of the equipment compliment f o r  the manned and unmanned 
concepts is shown i n  Table 2.3-9 .  

It is noted t h a t  f o r  a 480 

The unmanned 51 hour mission has  good p r o b a b i l i t y  ( 0 . 9 6 6 )  of mission 

TABLE 2 .3-8 RELIABILITY 

I I I 

I I I 
I I 

I Manned I 0.946 I 
I I I 

I I I 

I Configurat ion I 28 Day Mission I 51 Hour Mission 

0.996 

0.72 I 0.996 I Unmanned (Single  S t r i n g )  I 

2 .3 .3 .3  Man Rating Costs 

The c o s t  of man-rating is of course of i n t e r e s t .  It is estimated a t  
t h i s  po in t  i n  the  development of the OTV concept t h a t  the c o s t  d i f f e r e n c e s  
between a l l  unmanned and manned operat ions are based on t h e  LCC d a t a  i n  Table 
2.3-6 as follows: 

Investment 
( D E E  61 Production) 

0 pera t ions 
368 Missions 

$400M 

$4370M 

Operations c o s t s  ignore the  reduced losses r e s u l t i n g  from a higher  
r e l i a b i l i t y .  
is  given by 

The expected l o s s e s  f o r  s i n g l e  s t r i n g  and the  man-rated concepts 

(1-R)N x Expected Loss Cost 
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TABLE 2.3-7 MAN-RATED CONFIGURATION EQUIPMENT 

1 COMPONENT FAILURE QUANTITY RELIABILITY I 
I RATE I 
I I 
I S t r u c t u r e  
I LO2 Tank 
I LH2 Tank 
I L ines  & . F i t  
I Main Engine 
I TVC A c t  

I Q D ' s  
I Check Valves 
I F i l ters  
I Thermo V I  
I PU Valve 
I Pneu Valve 
I E l e .  I / F  SS 
I ACS Eng 
I GH2 Tank 
I GO2 Tank 
I Lines  & F i t  
I SOL Valves 
I Q D ' s  
I Check Valves 
I Reg's 
I Hx 
I Turbo Pump 
1 Aero A c t s  
I Fuel  C e l l  
I Radia to r s  
I FC Pwr Cond 
I Star Tracker 
I IMU 
I Computer 
I F l t  Cont ro l  
I TLM PWT Supply 
I Cmd C Data Hdlr 
I Transponder 
I RF Amplifier 
I GPS Rcvr 
I GPS Antenna 
I Sequencer 
I Deploy Timer  
I Ba t t e ry  
I Motor SW 
I Steer Ant 
I Diplexer 
I Meteor Shie ld  
I Wiring 
I 

I SOL Vlvs 

1.00000000E-6 
4.50000000E-7 
4.50000000E-7 
1.00000000E-6 

1.25000000E-5 
4.80000000E-6 
1.00000000E-7 
1.00000000E-6 
4.50000000E-8 
2.14200000E-5 
9.70000000E-6 
9.70000000E-6 
2.30000000E-8 

4.5OOOOOOOE-7 
4.50000000E-7 
1.OOOOOOOOE-6 
4.80000000E-6 
1.00000000E-7 
1.00000000E-6 
5.90000000E-6 
3.00000000E-6 
7.00000000E-6 
1.25000000E-5 
1.05000000E-5 
1.00000000E-6 
1.00000000E-5 
2.00000000E-5 
1.00000000E-4 
1.00000000E-4 
1.00000000E-5 
2.50000000E-6 
1.00000000E-5 
2.00000000E-5 
1.00000000E-5 
1.00000000E-5 
9.00000000E-8 
1.00000000E-5 
1.00000000E-5 
1.43000000E-5 
1.00000000E-6 
2.70000000E-6 
1.00000000E-6 
1.00000000E-6 
1.00000000E-5 

--------- 

--------- 

1 
2 
2 
1 
2 
4 

10 
23 
8 
6 
8 
2 
4 
4 
4 
2 
1 
1 

24 
43  
4 
6 
2 
3 
6 
2 
2 
2 
2 
2 
2 
2 
1 
1 
1 
1 
1 
2 
2 
2 
1 
2 
2 
2 
1 
1 - 

Tota l  

.9995201150 

.9 99568 0930 

.9995680930 

.9995201150 

.9996119100 

.999999 8290 

.9999998910 

.9988966090 

.9961673630 

.9999567990 

.9999957040 

.9907312220 

.9999995660 

.9 999558410 

.9998560070 

.9995680930 

.9997840230 

.9995201150 

.9999999940 

.9979381290 

.9980818420 

.9999999980 

.9999999790 

.9999999930 

.9997 52 3500 
9 999999990 

.9999994950 

.9999 77 07 00 

.999 8997535 

.9975935185 

.99 7 5 9 35 18 5 

.999974826 

.99 8 74 32 903 

.9949826293 

.9899904325 
,9949826293 
.9949826293 
.9999999980 
.999974826 
.9999770700 

.9999845581 

.9999998320 

.9 9904046 10 

.9990000000 

.9 9997707 00 

. 9 9 9 9 a m a i  

946447 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I I 
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TABLE 2.3-9 COMPARISON OF UNMA"ED/MA"ED EQUIPMENT REQUIREMENTS 

EauiDment Manned Unmanned I 

S t r u c t u r e  
LO2 Tank 
LH2 Tank 
Line 61 F i t  
Main Engine 
TVC A c t  
SOL Valves 
QD's 
Check Valves 
F i l t e r s  
Thermo V t  
PU Valve 
Pneu Valve 
E l e  I / F  SS 
ACS Eng 
GH2 Tank 
GO2 Tank 
Lines & F i t  
SOL Valves 
QD' s 
Check Valves 
Reg's 
Hx 
Tur bo-Pmp 
Aero A c t s  
Fuel C e l l  
Rad i a t  or8 
FC Pwr Cond 
S t a r  Tracker 
IMU 
Computer 
F l i g h t  Control 
TLM P w r  Supply 
Cmd & Data Hdlr 
Transponder 
RF Amplifier 
G P S  Receiver 
GPS Antenna 
Sequencer 
Deploy Timer  
Ba t t e ry  
Motor SW 
S t e e r  Antenna 
Diplexer 
Meteor Shield 
Wiring 

.. 

i 
1 
2 
2 
1 
2 
4 
10 
23 

8 
6 
8 
2 
4 
4 
4 
2 
1 
1 

24 
4 3  

4 
6 
2 
3 
6 
2 
2 
2 
2 
2 
2 
2 
1 
1 
1 
1 
1 
2 
2 
2 
1 
2 
2 
2 
1 
1 

1 
2 
2 
1 
1 
2 
4 

19 
2 
4 
4 
2 
2 
4 
4 
2 
1 
1 
8 

17 
2 
2 
1 
1 
6 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
1 
1 
1 
1 
1 
1 
2 
2 
2 
1 
1 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
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The expected c o s t  f o r  an  average loss was obtained as follows: 

Payload Value $194M 
Payload Delivery t o  GEO (20 k l b  x $2K) 40M 
OTV Fuel  t o  GEO (64.5 k l b  x $2K) 129M 
Operations 5M 

Expected Loss Cost (W/C x 50%) $184M 
Worst Case Cost m M  

The reduct ion of worst case loss cos t  by 50% r e f l e c t s  an average l o s s  
c o s t  ac ross  a l l  the  missions. 
man-rated we get :  

Computing the l o s s e s  f o r  simple s t r i n g  and 

Single  Str ing:  
Manned 
Unmanned 

Man Rated: 
Manned 
Unmanned 

Now i t  i s  clear t h a t  
man-rat ing is 

Investment 

Operations 

These d a t a  should be 

$139M 
$261M rn 

i n  combination of these c o s t  f a c t o r s  the c o s t  of 

$4 OOM 

$4370M + 400M - 2930M = 1840M 
which i s  equivalent  t o  about $5M per manned 
mission (operat ions cost /missions)  

viewed as only i n d i c a t i o n s  of the cos t  of 
man-rating. However, based on t h i s  r e l a t i v e  immature concept d a t a ,  the 
increased f l e x i b i l i t y  of manned mission c a p a b i l i t y  i s  achieved f o r  a modest 
i nc rease  i n  c o s t  per  f l i g h t .  

2.3.4 Conclusion 

R e l i a b i l i t y  f i g u r e s  are based upon the NASA po l i cy  t h a t  "no s i n g l e  
c r e d i b l e  f a i l u r e  s h a l l  preclude the safe r e t u r n  of t he  crew". 
r e l i a b i l i t y  requirement f o r  a manned 28 day mission is  0.946 and f o r  a manned 
5 1  hour mission is  0.996. The r e s u l t i n g  unmanned s i n g l e  s t r i n g  r e l i a b i l i t y  
requirement f o r  a 28 day mission is 0.72 and f o r  an  unmanned 5 1  hour mission 
i s  0.966. 

The r e s u l t i n g  

The c o s t  of upgrading from unmanned t o  man-rated i s  $2.2B. 

The quest ion of evolut ionary s t r a t e g y  is no t  answered by t h i s  a n a l y s i s ;  
whether t o  start  single s t r i n g  and then t r a n s i t i o n  by block change t o  a 
man-rated OTV o r  start  out man-rated. 
the evo lu t ion  s t r a t e g y  t r a d e s  i n  Section 2.7. 

These dec i s ions  are properly a p a r t  of 
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2.4 Prope l l en t  Delivery Trade Study 

The purpose of t h i s  t r a d e  s tudy is t o  select a p re fe r r ed  method f o r  
d e l i v e r i n g  cryogenic p rope l l an t  t o  LEO for use in space based Om operat ions.  
A t  i s s u e  are two questions:  
economically v i a b l e  than using the e x i s t i n g  Space Transportat ion System (STS) 
cargo bay; and, i f  so, what new system would be the  most economically v i ab le .  

would a new p rope l l an t  de l ive ry  sys tem be more 

This study is a necessary p r e r e q u i s i t e  f o r  the evolut ionary s t r a t e g i e s  f o r  
t he  a c q u i s i t i o n  of an OTV t h a t  captures  the  mission model. 
2.7.3, Pre fe r r ed  Overal l  Evaluation).  
p rope l l an t  de l ive ry  approach is a key i s s u e  in t h e  economics of e s t a b l i s h i n g  
OTV as a v i ab le  venture.  
Propel lant  t o  LEO and t h e r e f o r e  the c o s t  per pound of the de l ive ry  sys tem has 
a major i n f luence  on whether the OTV w i l l  be competit ive with e x i s t i n g  s t ages  
and e x i s t i n g  LEO de l ive ry  methods. 

(Ref paragraph 
The s e l e c t i o n  of t he  preferred 

The s i n g l e  most c o s t l y  f a c t o r  is d e l i v e r i n g  

The s tudy addresses  only cryogenic propel lant  and considers  only the  Af t  
Cargo Carrier (ACC) f o r  use i n  propel lant  scavenging. I f  s t o r a b l e  p rope l l an t  
had been s e l e c t e d  over cryogenic p rope l l an t ,  then a follow-on p rope l l an t  
de l ive ry  t r a d e  would have been required using s t o r a b l e  p rope l l an t  as a b a s i c  
considerat ion.  (Ref paragraph 2.6, Storable  versus  Cryogenic Trade Study). 
Likewise, i f  the cargo bay had been s e l e c t e d  over the ACC f o r  p rope l l an t  
scavenging, then a f ollow-on propel lant  de l ive ry  t r ade  would have been 
required using cargo bay scavenging as a b a s i c  considerat ion (Ref paragraph 
2.7.2,  ACC versus  Cargo Bay f o r  OTV Delivery/Scavenging). 

2.4.1 Approach 

The approach used i n  t h i s  t r a d e  is t o  create a s impl i f i ed  de l ive ry  problem 
and eva lua te  the economic b e n e f i t s  of the de l ive ry  concepts. 
dec i s ion  involved in t h e  t r ade  is whether it is j u s t i f i e d  t o  embark on an 
a c q u i s i t i o n  of a tanker ,  a scavenging system, or both; or whether t o  use the 
STS as a d e l i v e r y  system. 
Investment (ROI)] r a t i o  w i l l  be the p r i n c i p l e  measure. 

The fundamental 

The following cost  bene f i t  [ i . e . ,  Return on 

STS PROPEUANT DEL. COST - OPTION PROPELLANT DEL. COST -1 = ROI 

O P T I O N  I N V E S T m N T  COST 

I f  t he  r a t i o  is negat ive,  the op t ion  is no t  a 

A p o s i t i v e  r a t i o  ind ica t ed  the  venture is p r o f i t a b l e .  

v i a b l e  economic venture.  
I f  the r a t i o  is zero,  the venture r e t r i e v e s  the investment but is not  
p r o f i t a b l e .  

2.4.2 Ground Rules and Assumptions 

The ground r u l e s  and assumptions l i s t e d  below are used i n  t h e  t r ade  
study. 
i nd ica t ed  as present  value [PV] d o l l a r s .  

Costs  are in m i l l i o n s  of constant  1985 d o l l a r s ,  un le s s  otherwise 
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0 om 

0 Mission Tra f f i c :  10 missions per year ,  1999-2010 
o Configuration: 55 k l b  s t age  wi th  483 sec I s p  
o Payload: 12.4 k l b  t o  GEO 

24 k l b  r e t u r n  
o Propel lant :  LH2 /LO2 
o Propel lan t  Rqmt: 41.37 k l b  per mission 
o To ta l  Prop. Rqmt 

(41370 x 120 missions): 4.9644 mlb 

0 Scavenging 

0 

0 
0 

0 
0 

0 

0 

0 

0 

0 

Scavenging System: STS ACC 
Scavenging System Acquisi t ion:  1995-1998 
STS Scavenging Fl ights :  328 
Prop. Scavenged/Flight: 14  k l b  
T o t a l  prop. Scavenged: 4.592 mlb 
DDT&E: $212M 
DDNE [PV] ($212M x 2.16 / 4 yrs ) :  $114.5M 
Prope l l an t  Del ivery Cost: $1167M 
Cost per f l i g h t  ($1167M / 328): $3.6M 
Prope l l an t  Delivery Cost [PV] ($1167M x 1.97 / 1 2  F 6 ) :  

$191.6M (see Sect ion 1.3 f o r  uniform discount ing)  

0 STS Cargo Bay 

0 

DDT&E: $4M 
DDT&E [PV] : $2.2M 
Prop. Del ivery Rqmt. 4.9644 mlb 
STS Delivery Capacity: 65 k l b  
STS F l i g h t s  
(4.9644M/65 klb) :  76.4 
STS cos t  per f l i g h t :  $73M 
Prope l l an t  Delivery Cost 
(76.4 x $73M): $5577 
P rope l l an t  Delivery Cost [PV] 
($5577M x 1.97 / 1 2  yrs ) :  $915.4M 

0 SDV Tanker 

0 

0 

0 

0 

0 
0 

0 

0 

0 

SDV Tanker Acquisit ion: 1995-1998 
DDT&E: $2200M 
DDT&E [PVla 
($2200 x 2.16 / 4 yrs) :  $1188M 
Prope l l an t  Del ivery Rqmt: 4.9644 mlb 
SDV Delivery Capacity: 181 k l b  
SDV F l i g h t s  
(4.9644M / 181 klb) :  27.4 
SDV Cost per Fl ight :  $75M 
Prope l l an t  Del ivery Cost 
(27.4 x $75M) $2055M 
Prope l l an t  Del ivery Cost [PV] 
($2055 x 1.97 / 12 yrs ) :  $337.4M 
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0 STS Cargo Bay/Scavenging 

0 
0 

0 

0 

0 

0 

0 

0 

0 

DDT&E ($4M + $212M): $216M 
DDT&E [PV] ($2.2M + $114.5M): $116.7M 
Scavenge Prop. Delivery: 4.592 mlb 
STS CB Prop. Del. 
(4.964411 - 4.592M): ,372 mlb 
STS F l i g h t s  (0.372#/65 k l b )  5.7 
STS CB D e l  Cost (5.7 x $73M): 
ACC Scavenging Prop. D e l .  Cost: 
To ta l  Prop. Delivery Cost 
($416 + $1167): $1583M 
Tota l  Prop Delivery Cost [PV] 
($1583M x 1.97 / 12 yrs) :  

$416M 
$1167M 

$260.2M 

0 SDV Tanker/Scavenging 

0 

0 
0 

0 

0 

0 

0 

0 

0 

DDT&E ($2200 + $212M): $2412M 
DDT&E [PV] ($1188M + $114.5M): $1302.5M 
Scavenge Prop. Delivery 4.592 mlb 
SDV Tanker Prop. Delivery 
(4.9644M - 4.592M): .372 mlb 
SDV Tanker F l i g h t s  
(0.372M/181,000): 2.1 
SDV Tanker D e l .  Cost 
(2.1 x $75M): $157M 
ACC Scavenging Prop. 
Delivery Cost: $1167M 
To ta l  Prop Delivery Cost 
($157 + $1167): $1324M 
Tota l  Prop. Delivery Cost [PV] 
($1324M x 1.97 / 12 yrs) :  $217.OM 

2.4.3 Al t e rna t ives  

The fol lowing a l t e r n a t i v e  methods f o r  propel lan t  de l ive ry  t o  LEO are 
considered i n  the  t rade  study. 

o Al t e rna t ive  1 - STS/scavenging. 

This  opt ion provides cryogenic propel lan t  € o r  use a t  LEO by 
combining two propel lan t  de l ive ry  methods. One, excess  propel lan t ,  
l e f t  over from STS launches,  is acquired through a scavenging system 
contained i n  t h e  ACC. This propel lan t ,  i n  t u r n ,  is o f f  loaded a t  the  
Space S ta t ion .  

The second method uses  tanks  c a r r i e d  i n  t h e  STS cargo bay t o  
c a r r y  add i t iona l  propel lan t  t o  the Space S t a t i o n  t o  complete the 
on-orbit p rope l lan t  a v a i l a b i l i t y  requirements. 
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0 A l t e r n a t i v e  2 - S h u t t l e  Derived Vehicle (SDV) Tanker. 

0 The tanker  used f o r  t h i s  a l t e r n a t i v e  i s  a veh ic l e  s p e c i f i c a l l y  
designed t o  launch heavy payloads i n t o  o r b i t .  This veh ic l e ,  when 
configured as a tanker ,  i s  capable of d e l i v e r i n g  l a r g e  amounts of 
p rope l l an t  (181 k l b )  t o  the Space S ta t ion .  

0 Al t e rna t ive  3 - Tanker and Scavenging. 

This a l t e r n a t i v e  combines the  scavenging concept with a tanker  
t o  provide p rope l l an t  a t  the Space S ta t ion .  

0 Competition 

The competit ion f o r  the a l t e r n a t i v e s  used i n  t h i s  study is 
p rope l l an t  tanks c a r r i e d  i n  the STS cargo bay. 
s e l e c t e d  as t h e  competition s i n c e  technology €or  the  concept i s  
p resen t ly  ava i l ab le .  

This opt ion is 

2.4.4 Cost of A l t e r n a t i v e s  

An economic a n a l y s i s  f o r  each a l t e r n a t i v e  is  shown f o r  b e n e f i t  i n  Table 
2.4-1 and f o r  ROI i n  Table 2.4-2. The d a t a  i n  these t a b l e s  are ex t r ac t ed  from 
the  l ist  of ground r u l e s  and assumptions i n  paragraph 2.4.2 and converted t o  
discounted d o l l a r s .  

The p resen t  value c a l c u l a t i o n s  f o r  discounted d o l l a r s  assumes a constant  
d i s t r i b u t i o n  of c o s t  and the re fo re  can be s impl i f i ed  t o  a s i n g l e  f a c t o r  f o r  
p rope l l an t  de l ive ry  and f o r  investment ( i .e . ,  DDT&E). 

o P rope l l an t  d e l i v e r y  f ac to r :  1.97 

o Investment f ac to r :  2.16 

TABLE 2 -4-1 BENEFITS (DISCOUNTED $M) 

I I I 
I A l t e r n a t i v e  1 STS Prop. Option Prop. 
I I D e l .  Cost - Del. Cost = Benefi t  
I I 

I I 
I 1 I $915.4 - $260.2 = $655.2 I 
I 

I STS/Scavenging I I 
I I I 
I 2 I $9l5.4 $337.4 = $577.0 I 
I SDV Tanker I I 

= $698.4 
I 

$217.0 
I 
I 3 I $915.4 
I Tanker/Scavenging I 
I I 
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TABLE 2.4-2 RETURN ON INVESTMENT 

(Discounted $M) 

,I I I Investment I I I 
I 
I 

I I 
I Adj* I Rol 

1 Alternative I Benefit 
I I 
I 
I 1 i 
I I 
I 2 I 
I I 
I 3 I 
I Tanker/Scavengingl (698.4 / 1302.5) - 1  -0.5 
I I 

I STSjScavenging I (655.2 / 116.7) - 1  = 4.6 

I SDV Tanker I (577.0 / 1118.0) - 1  = -0.5 

I I I 
~ 

2 . 4 . 5  Alternative Comparison 

The results of the propellant delivery analysis are summarized in Table 
2 . 4 - 3 .  Alternative 1, scavenging combined with STS cargo bay propellant 
delivery, is clearly the most advantageous option. 
negative value for both Alternatives 2 and 3 indicating that they are not 
economically viable ventures. The relatively low investment cost of 
Alternative 1, has a significant effect on the trade study results since It is 
also a factor used in the ROI and LCC calculations. 

The R O I  analysis shows a 

The benefit analysis shows a fairly even score among the alternatives with 
the greatest advantage lying with Alternative 3, SDV/Scavenging. Scavenging, 
utilized by Alternatives 1 and 3, boosts the benefit score of these 
alternatives over that of Alternative 2. 

0 

The difference in scores between Alternatives 1 and 3 are due to the bulk 
delivery modes of the options, i.e., cargo bay versus SDV Tanker, As can be 
seen the SDV Tanker provides the greater benefit of the two. 
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TABLE 2.4-3 PROPELLANT DELIVERY RESULTS 
(Discounted $M) 

I I I I I 
I OPTION i 
I Economic I 1  2 3 I 

I I 
I I I 

I STS/Scavenging SDV /Tanker Tanker/Scavenging I I Factor 

I ROI I 4.6  

I Benefi ts  I $655.2 
I I 

I I 
I Investment I 

I $116.7 
I 
I $376.9 I LCC 

I (DDT&E OPS c o s t )  I 
I (DDT6rE) 

-0.5 -0.5 

$577 .O $698.4 

$1188 $1302.5 

$1525.4 $1519.5 

I I 
I SCORES I 

I 10 
I 
I 9.3  
I 
I 10 I Investment 

I I 
I LCC I 

i Rol 

I Benefits 

10 

0 

8.2  

1.0 

2.5 

0 

10 

.9 

2.5 

2 . 4 . 6  Conclusion 

A l t e r n a t i v e  1, scavenging combined with STS Cargo Bay p rope l l an t  d e l i v e r y ,  
provides the most favorable  economic means of d e l i v e r i n g  p rope l l an t  t o  LEO f o r  
use i n  OTV operat ions.  The investment costs associated with the development 
of SDV tanker  makes the use of A l t e rna t ives  2 and 3 uneconomical when appl ied 
t o  the Revision 8 Low Mission Model. 

It s h a l l  be noted t h a t  A l t e r n a t i v e s  2 and 3 would become more a t t r a c t i v e  
if a g r e a t e r  demand f o r  bulk de l ive ry  of p rope l l an t  t o  LEO e x i s t e d ,  or i f  the  
SDV tanker  DDT&E was shared with another  program (e.g., Space S ta t ion ) .  A s  
shown i n  the  s tudy,  scavenging provides the most economical means of 
d e l i v e r i n g  p rope l l an t  t o  LEO, however, the amount of p rope l l an t  acquired by 
t h e  scavenging is l imi t ed .  
Revision 8 Low Mission Model are mostly s a t i s f i e d  by the scavenging concept. 
Delivery of t he  r e l a t i v e l y  small amount of p rope l l an t  remaining to meet the 
on-orbit demand can be s a t i s f i e d  by the  STS f o r  less than  t h e  cos t  of 
developing a new more e f f i c i e n t  p rope l l an t  de l ive ry  vehicle .  
requirements change whereby g r e a t e r  q u a n t i t i e s  of propel lant  must be del ivered 
t o  LEO in bulk, then the use of the SDV tanker  becomes more a t t r a c t i v e .  

Space based OTV p rope l l an t  requirements under the  

I f  mission 
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The bulk de l ive ry  requirement can be a f fec ted  i n  two ways. One by a 
g r e a t e r  demand f o r  propel lan t  a t  LEO t o  s a t i s f y  OTV ope ra t iona l  needs; and, 
two by t h e  percentage of t h i s  demand suppl ied through scavenging decreasing. 
In essence,  the economic b e n e f i t  received from a grea te r  number of bulk 
propel lan t  de l ive ry  missions would be needed in order  t o  o f f s e t  the  investment 
cos t  of a new tanker  vehicle .  
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2.5 Tank Farm Trade Study 

The purpose of the tank farm t r ade  study i s  t o  determine the most 
advantageous means f o r  s t o r i n g  propel lant  i n  the v i c i n i t y  of the Space 
S ta t ion .  A f r ee - f ly ing  p rope l l an t  farm, a t e the red  p rope l l an t  farm, and a 
p rope l l an t  farm loca ted  on the Space S t a t i o n  were considered. 
t r a d e s  conducted are r epor t ed  i n  Volume IV, Sect ion 8.2, of t h i s  F i n a l  
Report. 
conducted and t h e  Space S t a t i o n  l o c a t i o n  w a s  a clear winner f o r  both s t o r a b l e  
and cryogenic p rope l l an t s .  

The t echn ica l  

A sco r ing  based on ob jec t ive  and s u b j e c t i v e  considerat ions was 

We basel ined the  on-station tank farm as t h e  lowest c o s t  and lowest r i s k  
s o l u t i o n ,  and t h i s  approach I s  r e f l e c t e d  i n  subsequent analyses.  
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2.6 Storable  versus  Cryogenic Propel lant  Trade Study 

The purpose of t h i s  t r ade  study i s  t o  select between s t o r a b l e  p rope l l an t  
and cryogenic p rope l l an t  f o r  use by the OTV. 

2.6.1 Approach 

This  t r a d e  includes an a n a l y s i s  of DDT&E, production, and operat ions 
cos t s .  These c o s t s  are converted from constant  d o l l a r s  t o  present  value 
d o l l a r s  and r u n  through r e t u r n  on investment, b e n e f i t ,  and investment analyses  
i n  o rde r  t o  provide d i sc r imina to r s  u s e f u l  f o r  making a s e l e c t i o n .  

2.6.2 Ground Rules and Assumptions 

Data used f o r  t h i s  t r a d e  study were developed under the Revision 7 Nominal 
Mission Model. 
w a s  $500/lb f o r  cryogenic and $600/lb f o r  s t o r a b l e .  
production and de l ive ry  t o  LEO. 
Revision 7, w e  be l i eve  they provide a real is t ic  enough r ep resen ta t ion  of 
Revision 8 prope l l an t  c o s t  t o  make a s e l e c t i o n  between the cryogenic and 
s t o r a b l e  p rope l l an t  options.  

The c o s t  of propel lant  when the mission c a l c u l a t i o n s  were run 
This c o s t  includes 

Although these d a t a  were developed us ing  

Other ground r u i e s  and assumptions used i n  the s tudy follow: 

o A l l  c o s t s  are i n  1985 d o l l a r s  and exclude f ees .  

o A l l  c o s t  estimates r e f l e c t  midterm d a t a  (weight, mission model, e t c )  
generated f o r  the cryogenic and s t o r a b l e  s t a g e  f ami l i e s .  

o DDThE 

Maximum sharing of engineering & t oo l ing  e f f o r t s  between s t a g e s  w a s  
assumed where appl icable .  

Ground test hardware includes S t a t i c  T e s t  Art ic le  (STA), Ground 
Vibrat ion Test Article (GVTA), Main Propulsion T e s t  Article (MPTA) and 
Funct ional  Test Article. 

Dedicated f l i g h t  tests required f o r  the ground based O W ;  no space 
based configurat ion f l i g h t  tes t  assumed. 

F l i g h t  test articles refurbished t o  operat ions spares .  

Space S t a t i o n  assessment l imi t ed  t o  tank farm Impacts. 

54 



. 

o Production 

Each unique s t a g e  assumes an i n i t i a l  production run of 2 u n i t s  (1 
operat ion,  1 spa re  ( f l i g h t  t e s t / G V T A  Article refurbished f o r  ground 
based). 

92% Wright l e a r n i n g  curve assumed; l e a r n i n g  shared ac ross  s tages .  

Transportat ion charges f o r  space based production hardware included i n  
production (68.5M/STS f l t )  (1.5 f l t s / f u l l  SB s t a g e )  

o Operations 

Payload de l ive ry  c o s t s  assumed the same, t r a n s p o r t a t i o n  c o s t s  not  
included; no r e f l i g h t s  included. 

P rope l l an t  usage based on 421 missions ex t r ac t ed  from the midterm, 
nominal mission model (32 GB, 389 SB) 

Eas te rn  T e s t  Range Launch only; STS Cost Per F l i g h t  (CPF) = $68.5M; A f t  
Cargo Carrier CPF = 2.3M 

Mission operat ions a t  35 man-yrs/yr 

F u l l  STS use r  charge for’GB OTV; r e t u r n  f l i g h t  assumed ava i l ab le ;  
s t o r a b l e  pays a d d i t i o n a l  t r a n s p o r t a t i o n  charges f o r  the Apogee K i c k  
Motor. 

o Space Based 

- 
- IVA = 80 h r d m i s s i o n  @ $16K/hr; EVA = 4 h r d m i s s i o n  @ $48K/hr. 

2 OMV uses per SB mission per  MSFC guidel ines  (p rope l l an t  use 
approx. 500 l b  per mission) 
Mission Ops - $ldK/hr 
Hardware de l ive ry  assumed a t  1 STS f l i g h t  per s t a g e  (less brake). 

Aerobrake L i f e  = 5 f l i g h t s ;  t r anspor t a t ion  a t  0.33 STS f l t s . / b r a k e  
Engine L i f e  = 20 f l i g h t s ;  0.1 STS f l igh t / eng ine  
Avionics,  Environmental P ro tec t ion  System, s t r u c t u r a l  l i f e  = 40 
f l i g h t s ;  1 STS f l t / replacement  

o Fac i l i t i es  

A s  clear d i sc r imina to r s  f o r  ground based f a c i l i t y  c o s t  estimates were 
not  i d e n t i f i e d  a t  t h i s  t i m e ,  the  same requirements were assumed f o r  
both items. 
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2.6.3 Al t e rna t ives  

The two a l t e r n a t i v e s  i d e n t i f i e d  f o r  t h i s  s tudy are s t o r a b l e  p rope l l an t  and 

The cryogenic propel lant  considered the combination of l i q u i d  
cryogenic propel lant .  
N204/MMH. 
hydrogen and l i q u i d  oxygen. 

The s t o r a b l e  p rope l l an t  considers  the combination of 

2.6.4 Cost of A l t e rna t ives  

The l i f e  cycle  cos t  of s t o r a b l e  and cryogenic p rope l l an t s  is summarized i n  
Table 2.6-1 and shows the c o s t  f o r  DDTdE, production, and operat ions i n  both 
constant  and discounted d o l l a r s .  
lower than s t o r a b l e  by a f a c t o r  of 21 percent i n  constant d o l l a r s  and 13 
percent in discounted d o l l a r s .  This i n d i c a t e s  t h a t  the advantage cryogenics 
hold over s t o r a b l e  is reduced as  the cos t  of providing p rope l l an t s  a t  LEO is  
reduced. This is s i g n i f i c a n t  s ince the  primary c o s t  of the OW is 
prope l l an t .  
t h e  d i sc r imina to r s  and, as ind ica t ed  i n  Table 2.6-1, the two a l t e r n a t i v e s  
would be e s s e n t i a l l y  equal.  

It should be noted t h a t  cryogenic costs are 

I f  p rope l l an t  were f r e e ,  the DDT&E and production c o s t s  would be 

Table 2.6-2 provides a breakout of DDT&E and shows t h e  d e l t a  c o s t s  f o r  
each element. Note t h a t  tank farm c o s t s  are included. Conceptual designs and 
equipment l ists  were developed f o r  t he  tank farms t o  determine if this 
element, along with p rope l l an t  c o s t s ,  is a major discr iminator .  
s een ,  t h i s  is not  the case s i n c e  there is only a $21M d i f f e rence  i n  favor  of 
cryogenic propel lants .  

As can be 

Table 2.6-3 provides a breakout of operat ions c o s t  and shows t h e  d e l t a  
c o s t  f o r  each element. The t a b l e  a l s o  provides a c o s t  per  f l i g h t  f o r  using 
s t o r a b l e  p rope l l an t  ($61.2411) and f o r  using cryogenic p rope l l an t  ($45.50M). 

Placed a t  the end of t h i s  t r ade  study s e c t i o n  are Tables 2.6-7 and 2.6-8 
which con ta in  spread s h e e t s  t h a t  show g r e a t e r  d e t a l l  on how LCC were developed 
f o r  the OTV using both s t o r a b l e  and cryogenic p rope l l an t s .  
placed a t  the back of this s e c t i o n ,  provides a spread shee t  of OTV competition 
c o s t s .  Competition c o s t s  r ep resen t  cos t ing  of the mission model using the STS 
with e x i s t i n g  upper s t age  veh ic l e s  o r  d e r i v a t i v e s  thereof .  The competition 
c o s t  t o t a l s  shown a t  the bottom of the spread shee t  are a l s o  placed on Tables 
2.6-7 and 2.6-8 f o r  ease  of comparison. 

Table 2.6-9, a l s o  

Table 2.6-4 shows the c a l c u l a t i o n s  f o r  a bene f i t  a n a l y s i s .  Calculat ions 
f o r  r e t u r n  on investment are shown in Table 2.6-5. 

A payback computation is g raph ica l ly  shown in Figure 2.6-1. This 
computation is  based upon a propel lant  c o s t  of $500/lb f o r  cryogeni'c and 
$600/lb f o r  s torable-propel lant .  
onorb i t  p rope l l an t  is due t o  the d i f f e r e n c e  i n  STS de l ive ry  requirements and 
scavenging opportunity.  
a d d i t i o n a l  s t o r a b l e  p rope l l an t  requirements and subsequent higher  propel lant  
u n i t  c o s t  of the scavenging/delivered mix. 
cryogenic propel lant  holds  an advantage over s t o r a b l e  propel lant .  
advantage w i l l  change p ropor t iona l ly  with the amount of p rope l l an t  required,  
thus a more o p t i m i s t i c  mission model would show a proport ional ly  g r e a t e r  
advantage f o r  cryogenic propel lants .  

The d e l t a  p rope l l an t  c o s t  per  pound f o r  

The d e l t a  r e f l e c t s  a conservative estimate of the 

As shown in the  Figure,  the 
This 
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TABLE 2.6-1 STORABLE VS CRYOGENIC STAGE TOP LEVEL COMPARISON 

I 
I CONSTANT $M STORABLE 

I 
CRYO DELTA I 

I 
I DDT&E 1238.23 
I 
I PRODUCTION 314.28 
I 
I OPERATIONS 8879.45 
I 
1 
I 

I 
I 

-------- 
10431.96 

Cry0 X Reduction = 
I 

1364.73 -126.50 I 
I 

237.84 76.56 I 
I 

6598.15 2281.30 I 
I 
I 
I 

8200.72 2231.24 I 
I 
I 

------- ----I- 

I 
I DISCOUNTED $M STORABLE CRYO DELTA 

I 
I DDTLE 586.90 
I 
I Production 74.60 
I 
1 Operations 1956.60 
I 

I 
670.40 -83.50 I 

I 
56.40 18.20 I 

I 
1552 .OO 404.60 

I I 
I I 
I TOTAL LCC 2618.10 2278.80 339.30 I 
I I 
I Cry0 % Reduction = 13 I 
I I 
I I 
I Competition LCC* 25365 (Constant $M) I 

4974 (Discounted $M) (See Table 5.7.3-23) I 
I 

I 

------- ------- ------ 

I *Does not include DDTCE 
I I 
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TABLE 2.6-2 STORABLE VS CRYOGENIC STAGE DDT&E COMPARISON (CONSTANT $M) 

I I I I I 
I I STORABLE I CRYOGENIC I 

I 
I 

I DELTA I I I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 

D&D 
ASE/GSE/SSE 
Software 
T o o l i n g  
SE&I 
T e s t  Hardware  
T e s t  O p s  
T e s t  F i x t u r e s  
P r o g  Manage. 

1 S t a g e  DDTLE 
I 

398.10 

71.80 
19.40 
91.80 
128.50 
22.50 
3.90 

46.60 

39 .ao 
491.50 
39.30 
69 .OO 
19.50 
108.00 
142.50 
26.10 
4.50 
54 .OO 

-93.40 
0.50 
2.80 
-0.10 
-16.20 
-14.00 
-3.60 
-0.60 
-7.40 

822.40 954.40 -132.00 I 
I 

I L e v e l  11 I 
I PM, SECI,  T e s t  156.30 171.80 -15.50 I 
I T e s t  F l t s  68.50 68.50 0 .oo I 
I I 
I Tank Farm 191.00 170 .OO 21.00 I 
I P r o g r a m  Management 16.60 14.80 1.80 I 

I T o o l i n g  15.80 13.70 2.00 I 

t T e s t  O p s / F i x t u r e s  11.50 10.30 1.20 I 
I 

I DDT&E T o t a l  1238.20 1364.70 -126.50 I 
I 

I D&D/SE&I 141.80 122.20 19.60 I 

I T e s t  Hardware  5.30 9.60 -4.30 I 
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TABLE 2.6-3 STORABLE VS CRYOGENIC STAGE OPERATIONS COMPARISON (CONSTANT $M) 

I I I I I 
I 
I 
I 

I I I 
I 

I DELTA 
I I STORABLE I CRYOGENIC 

I PROP OPS/GB DELIVERY 
I Mission OPS 
I I V A  
I EVA 
I Stage Hw Refur/Spares 
1 Eng Replacement 
I Aero Replacement 
I OMV Use 
I Prog Management 
I Susta in ing  Eng 
I 

I 
I STS D e l  of 
I Eng C S t r  
I & Prod Hdw 

I STS D e l  of 
I Aerobrake 

I Tank Farm Ops 
I *Compressor Repair 

'1 *Major Overhaul 
I EVA f o r  C/O 
I Boiloff  

I 

I 

I 
I 

I 
I TOTAL OPS 

I CPF COMPOSITE 

7363.80 
44.10 
145.30 
21.10 
55.30 
15.50 

100.70 
66.70 
72 .OO 
32.30 

7916.70 

309.90 

607.30 

45.60 
6.10 

22.30 
17.20 - 

8879.50 

61.24 

5217.60 
44.10 
145.30 
21.10 
49 .OO 
18.30 

162.10 
66.70 
62.80 
35 .OO 

5822 .O 

220.80 

498.60 

56.80 
8.90 
18.80 
17.30 
11.80 

6598.20 

45.50 

2146.20 I 
0 .oo I 
0 .oo I 
0 .oo I 
6.30 I 
-2.80 I 

-61.40 I 
0 .oo I 
.9.20 I 
-2.80 I 

I 
2094.70 1 

I 
89.10 I 

I 
I 
I 

108.70 I 
I 
I 

-11.20 I - 2.80 I 
3.50 I - 0.10 I 

I 
I 

2281.30 I 
I 

15.73 I 

-11.80 I 

I 
* Includes r e l a t e d  EVA/IVA 

I 

TABLE 2.6-4 STORABLE/CRYOGENIC BENEFIT (DISCOUNTED $M) 

I Competition I P rope l lan t  I I 
I A l t e r n a t i v e  I c o s t  I c o s t  I Benef i t  I 
I 

I I I I I 
I - 2618 = 2356 I 

I 

I 
4974 - 2278 = 2696 I I Cryogenic 

4974 I 
I I 
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TABLE 2.6-5 STORABLE/CRYOGENIC STAGE RETURN ON INVESTMENT 

I I Competition I Propellant I I I 
I Alternative I cost I cost I DDT&E I ROI I 
i i i i I I 

I I 

I ((4974 - 2618) / 586.9) - 1 3.01 I 
I 

I Cryogenic ((4974 - 2278) / 670.4) - 1 3.02 I 
I I 

‘ a  
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c 

1 1 1 1 1 1 1 1 1 1 1 1 1  
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2.6.5 Al te rna t ive  Comparison 

Table 2.6-6 provides a comparison of the p r i n c i p a l  economic f a c t o r s .  
a l s o  provides a score ranking the most favorable  a l t e r n a t i v e  10 and the o the r  
a l t e r n a t i v e  with a value r e l a t i v e  t o  the b e t t e r  option. 

It 

Table 2.6-6 OTV Sto rab le  Versus Cryogenic Propel lant  Trade Resu l t s  

I Economic I I 
I Factor  
I 

I Storable  
I 

Cryogenic I 
I 

i I I 
I Return on Investment I 3.01 

I Benef i t s  I 2356.0 

I Investment I 586.9 

I I 

I I 

3.02 

2696.0 

670.4 
I I I 
I I I 
I SCORE I I 

I I 
I I 

I 
I 
I Return on Investment . I 9.9 
I I 
I Bene f i t s  I 8.7 
I I 
I Investment I 10 

10 

10 

8.8 

2.6.6 Conclusion 

The cryogenic a l t e r n a t i v e  is recommended as t h e  p re fe r r ed  OTV propel lants .  
The r e t u r n  on investment between the two opt ions is  e s s e n t i a l l y  the same, 
however t h e  cryogenic a l t e r n a t i v e  advantage becomes g r e a t e r  as propel lant  
requirements i nc rease .  
growth. 

This opt ion the re fo re  provides g r e a t e r  f l e x i b i l i t y  f o r  

The b e n e f i t  a n a l y s i s  places  the  advantage on the  s i d e  of t he  cryogenic 
p rope l l an t .  
opt ions l ies  i n  DDT6rE cos t s .  This d i f f e rence ,  however, is no t  s i g n i f i c a n t  and 
both opt ions can be considered t o  be affordable .  

The main disadvantage f o r  cryogenic when comparing the  two 

It should also be noted t h a t ,  i f  OTV requirements change t o  include 
extended dwell  time on o r b i t ,  the use of s t o r a b l e  p rope l l an t s  should be 
r e v i s i t e d .  
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2.7 Evolutionary S t r a t egy  Trade Study 

The purpose of the evolut ionary t r ade  study is t o  select an o r b i t a l  
Transfer  Vehicle (0’57) development path t h a t  w i l l  accommodate a l l  missions set  
f o r t h  in Revision 8 of the Marshall Space F l i g h t  Center (MSFC) Low Mission 
Model. The options cover both ground based and space based operat ions as w e l l  
as unmanned and manned missions. Six opt ions which provide the s t r a t e g i e s  
s tud ied  are i l l u s t r a t e d  in Figure 2.7-1. 
time phasing in Figure 2.7-2. 

These same options are shown with 

Options 2 and 6 are i d e n t i c a l  except t h a t  during ground based operat ions 
Option 2 employs an Af t  Cargo Carrier (ACC) t o  d e l i v e r  the OTV t o  Low Earth 
Orb i t  (LEO) and Option 6 uses the  cargo bay. 
opt ions becomes more complex i n  t h a t  the investment cos t  f o r  developing the 
ACC should be shared with the  scavenging operat ion i f  scavenging is t o  a l s o  
use the ACC. 

Se l ec t ing  between these  two 

Due t o  the similarities and complexities a s soc ia t ed  with Options 2 and 6 ,  

Step 2 of the t r a d e  
they are addressed f i r s t  in a subtrade study t o  eliminate one o r  the o the r  
from content ion,  
study eva lua te s  the su rv iv ing  opt ion from S tep  1 along with the o t h e r  
remaining t r ade  study opt ions,  From this group, the opt ion r ep resen t ing  the 
p re fe r r ed  o v e r a l l  evolut ionary s t r a t e g y  is se l ec t ed .  

This subtrade is designated as Step 1. 
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I 3  I DELET ED I 
I I I 
I I I I I 

I I I I 
I I ----- M U  ------ I ---------------- SBM ------------ I ------- I 

1 4  
I I I I 1 

I I I I I 

I I I I 
I I I I I 

1 6  
I I I I I 

I 1 I I I 
1 7  
I I I I I 

I --- ------ I --------------- S Bu -_--------- I --SBM--- I i 5  
I --SBM--- I I --- GBU (CB) --- I ---------------- SBU ------------ 

I ---- GBU ------ I --------------- GBU (55K)------- I --GBM-- I 

LEGEND: 
GBU 45 k l b  Ground Based Nonman-rated 
SBU 
S BM 
GBM 55 k l b  Ground Based Man-rated 
EXU Expendable Norunan-rated 
CB STS Cargo Bay 
AC C Aft Cargo Carrier 

55 k l b  Space Based Norman-rated 
55 k l b  Space Based Man-rated 

NOTE : 
1. A l l  space based OTVs are de l ivered  i n  the  STS cargo bay. 
2.  A l l  ground based OTVs are de l ivered  I n  the ACC except  as noted i n  

Option 6.  

FIGURE 2.7-2 OTV CONFIGURATION EVOLUTION 
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2.7.1 Ground Rules and Assumptions 

I O  

' e  

Ground r u l e s  and assumptions which apply t o  the t r ade  study are shown 
below. They are cons i s t en t  with the OTV ground r u l e s  provided by the MSFC. 

o GENERAL - - Constant f i s c a l  year 1985 d o l l a r s  excluding f e e  and contingency 
Discount rate of 10% per year 

o Research and Technology (RCT) . - Assumed $100M f o r  Aeroassis t  F l i g h t  Experiment (AFE) f l i g h t  and $59M 
f o r  advanced engine technology base f o r  both candidates  

o Design Development Test and Evaluation (DDT&E) 
- Ground test hardware includes S t a t i c  T e s t  Art ic le  (STA), Ground 

Vib ra t ion  Test Article (GVTA) , Main Propulsion Test Article (MPTA), 
and f u n c t i o n a l  test art icle:  
hardware as required.  

- Dedicated f l i g h t  tes t  required f o r  i n i t i a l  stage: includes Space 
Transportat ion System (STS) de l ive ry  and propel lants .  - F l i g h t  t es t  ar t ic le  and GVTA of i n i t i a l  s t age  refurbished t o  meet 
ope ra t iona l  requirements. 

- Ground Based (GB) ACC ve r s ion  includes ACC DDT&E ($163M); CB vers ion 
includes $27M impact f o r  o r b i t e r  bay modif icat ions - A l l  opt ions include DDT&E f o r  payload (P/L) c l u s t e r i n g  s t r u c t u r e  

- Maximum sha r ing  of engineering and too l ing  e f f o r t  between s t ages  
assumed where appl icable  (evolutionary approach). - Supporting program DDT&E included per ground r u l e s  where app l i cab le  
(e.g., Space S t a t i o n  accommodations and tank f o r  ACC and p rope l l an t  
scavenging). 

Follow-on s t a g e s  include ground test 

o PROVISIONS - Each evolut ionary s t age  r e q u i r e s  two s t ages  a t  I n i t i a l  Operational 
Capab i l i t y  ( I O C )  (1 operat ions u n i t ,  1 spa re )  
-- Refurbished DDT&E hardware c red i t ed  t o  i n i t i a l  opt ion s t a g e  
-- No l e a r n i n g  on s t a g e s  assumed due t o  small production run -- Each evolut ionary opt ion s t age  r e q u i r e s  2 P/L c l u s t e r i n g  

-- Transportat ion charges of production hardware a l l o c a t e d  t o  
s t r u c t u r e s  (1 operat ions u n i t ,  1 spa re )  

opera ti on6 

o OPERATIONS - P / L  t r a n s p o r t a t i o n  c o s t s  included f o r  a l l  opt ions according t o  STS 
program use r  charge gu ide l ines  
-- 1994-1998 P/L ' s  and GB OTV s t a g e s  were considered an i n t e g r a l  P/L 

u n i t  and charged accordingly 
-- Space Based Payloads (1999-2010) were charged according t o  user  

charge guidel ines .  
-- Option 7 (GB evolut ionary opt ion)  P/L's were charged i n  the  same 

manner as 1999-2010 Space Based (SB) payloads (less than 6% of 
t h e  missions may p o t e n t i a l l y  be manifested with the s t a g e  
hardware on a s i n g l e  s h u t t l e )  
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0 OPERATIONS (Continued) 
STS u s e r  charge of $73M per f l i g h t ,  ACC charge of $2.3M where 
appl icable .  
Low Mission Model (145 f l i g h t s )  
Ground based Mission operat ions a t  35 Man-yrs/yr throughout 
ope ra t ions  period 
Expendable s t ages  (Options 4 & 5, 1994-1998) -- Operations (OPS) c o s t  includes s t a g e  Cost per  F l i g h t  (CPF) and 

Ground Based OTV 
-- Operations c o s t s  c o n s i s t e n t  with ACC - CB GB OTV Trade Study -- GB OTV s t ages  f o r  Option 7 (1999-1010) assume 1 s h u t t l e  f l i g h t  

Space Based OTV 

STS de l ive ry  of s t a g e  hardware and mission payload 

pe r  mission f o r  hardware de l ive ry  

Space S t a t i o n  I n t r a  Vehicular A c t i v i t y  (IVA) ca l cu la t ed  on a per 
mission b a s i s  a t  $15K/hr 
2 O r b i t a l  Maneuvering Vehicle ( O N )  uses per mission c o s t  
according t o  study ground r u l e s  a t  2 h r s  o u t ,  1.5 h r s  back and 
average of 500 l b  propel lant  per mission 
No Space Based Mission OPS o r  Extra  Vehicular A c t i v i t y  (EVA) 
required 
STS c o s t s  include de l ive ry  of i n i t i a l  ope ra t iona l  u n i t  and spa res  
as required 
On-orbit propel lant  c o s t s ,  are composite average of scavenged and 
STS tanker  c o s t s ,  determined by opt ion usage ($330 t o  $360/lb) 

Operations Spares -- STS t r a n s p o r t a t i o n  app l i cab le  only t o  SB s t a g e s  
-- Aerobrake L i f e  -- Engine L i f e  
-- Avionics,  EPS, ST'R L i f e  = 40 f l i g h t s ;  1 STS f l t / r ep lacemen t  

= 5 f l i g h t s ;  0.34 STS f l t s / b r a k e  
= 10 f l i g h t s ;  0.1 STS f l t / e n g i n e  

o PRODUCTION - 
- 

Produc t ion ' fo r  both opt ions includes 2 P/L c l u s t e r i n g  s t r u c t u r e s  (1 
opera t ions ,  1 spa re )  
No s t a g e  production is  required due t o  refurbishment of DDT&E 
hardware and low f l i g h t  rates. 

o FACILITIES - Facilities costs include 
-- Provis ions f o r  manufacturing f a c i l i t y  f o r  i n i t i a l  s t age  and 

-- Dedicated OTV Launch Processing F a c i l i t y  [Kennedy Space Center 

-- Mission operat ions area a t  e x i s t i n g  KSC f a c i l i t y  

refurbishment hardware 

(KSC 1 

o BENEFITS - STS b e n e f i t s  are based on 50% of the ca l cu la t ed  weight and volume 
p o t e n t i a l  a f t e r  t he  ground based OTV and STS payloads are manifested. 
Each of t he  P/Ls were manifested with s t a g e  f o r  both an ACC and a 
cargo bay OW concept. 
formance remaining represented p o t e n t i a l  STS P/L c a p a b i l i t y  t h a t  
could be u t i l i z e d  f o r  o t h e r  non-OTV P/Ls .  
a rough p r o b a b i l i t y  of how much of t h i s  a d d i t i o n a l  p o t e n t i a l  might 
be used. 

The amount of t o t a l  volume and weight per- 

The 50% f a c t o r  r ep resen t s  
, 
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2.7.2 Step 1: ACC versus  Cargo Bay f o r  OTV Delivery/Scavenging. 

A s  discussed in the  in t roduc t ion  t o  t h i s  t rade study t h e  purpose of t h i s  
subtrade a n a l y s i s  is two fo ld .  
o r  Option 6 (OTV in STS Cargo Bay) a s  the  preferred evolut ionary OTV 
development s t r a t e g y  (Figure 2.7-2). The other  is t o  select between the  ACC 
and the STS cargo bay the most economic way t o  d e l i v e r  the OTV t o  LEO during 
ground based operat ions and t o  d e l i v e r  scavenged p rope l l an t  t o  LEO during 
space based operat ions.  
p re fe r r ed  de l ive ry  mode depends on the  combined economics of the two systems. 
This s e l e c t i o n ,  i n  t u r n ,  w i l l  provide the answer t o  the f i r s t  p a r t  of the 
a n a l y s i s  and thus select  e i t h e r  the ACC (Option 2 )  or t he  STS cargo bay 
(Option 6) as the  preferred OTV evolutionary developmental s t r a t e g y .  The 
following theref  ore  addresses the  economy of OTV de l ive ry  and scavenging. 

One is t o  select e i t h e r  Option 2 (OW in ACC) 

OTV de l ive ry  and scavenging are co r re l a t ed  and the 

2.7.2.1 OTV Deliverylscavenging Al t e rna t ives  

Four possible  combinations e x i s t  f o r  d e l i v e r i n g  the OTV or scavenged 
p rope l l an t  t o  LEO. 
l i s t e d  below were derived. 
de l ive ry  mode and the second r ep resen t s  scavenging. 

The matrix i n  Figure 2.7.2-1 shows how the a l t e r n a t i v e s  
The first designat ion l i s t e d  r ep resen t s  t he  OTV 

0 A l t e r n a t i v e  1 CB/ACC 
o A l t e r n a t i v e  2 CB/CB 
0 Al te rna t ive  3 ACCIACC 
o A l t e r n a t i v e  4 ACC/CB 

I I SCAVENGING SYSTEM I 
I I ACC CARGO BAY I 
I I I I 
I I CARGO BAY I 1  2 I 
I OTV I I I 
I DELIVERY I I I 

1 3  4 '  I 
I I 

I 
I 

FIGURE 2.7.2-1 CARGO BAY VS ACC SCAVENGING 

2.7.2.2 Cost of OTV Delivery/Scavenging Al t e rna t ives  

The c o s t  of the OTV delivery/scavenging a l t e r n a t i v e s  is done in fou r  
p a r t s .  F i r s t  is t he  OTV de l ive ry  computations f o r  both the ACC and CB modes, 
next is the  scavaging computations in both the ACC and CB modes, t h i r d  is t he  
computations f o r  the OTV de l ive ry  and scavaging competition, and f i n a l l y  the 
computation f o r  the STS b e n e f i t  f a c t o r .  
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2.7.2.2.1 OTV Delivery Computations 

Computations f o r  OTV de l ive ry  t o  LEO a r e  based upon the configurat ions f o r  
the ACC and CB as shown i n  Figures  2.7.2-2 and 2.7.2-3 r e spec t ive ly .  
synopsis of a t y p i c a l  Geostationary Earth Orbi t  (GEO) payload de l ive ry  mission 
using these  configurat ions is  shown i n  Figure 2.7.2-4 f o r  the ACC and Figure 
2.7.2-5 f o r  the CB. As can be seen, the cargo bay scenario is  s i g n i f i c a n t l y  
less complex both i n  terms of OTV operat ions and on-orbit i n t eg ra t ion .  This 
i s s u e  i s  traded a g a i n s t  the increased b e n e f i t s  der ived from f r e e i n g  a d d i t i o n a l  
STS cargo bay space by placing the OTV i n  the ACC. 

A 

The Martin Marietta L i f e  Cycle Cost (LCC) Model w a s  used t o  de r ive  the 
OTV de l ive ry  c o s t  da t a  f o r  the ACC and CB configurat ions shown i n  Tables 
2.7.2-1 through 2.7.2-4.  These da t a  a r e  used t o  form the b a s i s  f o r  the OTV 
economic a n a l y s i s  described i n  paragraph 2 .7 .2 .3  below. Tables 2.7.2-1 and 
2.7.2-2 show the LCC assoc ia t ed  with each configurat ion i n  constant  d o l l a r s  
and present  value (PV) d o l l a r s  r e spec t ive ly .  
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TIME (H:M:S) 

00: 0o:oo 
00: 08: 2 
00: 08:350 
00: 09 : 35 
00: 12: 20 
00: 33: 290 
00:44: 20 
01:25:140 
21: 30 : 00 
22: 00: 00 
23: 05: 00 
24: 20: 00 
24: 35:OO 
25: 43: 000 
26: 15: 000 
27:50:000 
36: 18: 00 
36 : 22: 00 
36: 25:OO 
36: 49 :00 
38: 18: 00 
4 3: 17 : 00 
43: 47 :00 
44:02:00 
TBD 

EVENT 

LAUNCH 
mco 
OTV SEPARATION 
DEPLOY AEROBRAKE 
ORBITER OMS-1 
OTV BOOST-1 
ORBITER OMS-2 
OTV BOOST-2 
ORBITER RENDEZVOUS WITH OTV 
GRAPPLE OTV 
MATE PAYLOAD TO OTV 
RELEASE OTV/PAYLOAD 

OTV BOOST-3 
OTV/PAYLOAD SEPARATION 
OTV DEBOOST BURN 
ATMOSPHERIC ENTRY 
ATMOSPHERIC EXIT 
JETTISON AEROBRAKE 
OTV LEO REBOOST - 1 
OTV LEO REBOOST - 2 
ORBITER RENDEZVOUS 
GRAPPLE OTV 
OTV STORAGE 
ORBITER DEORBIT 

- 

ORBITER SEPARATION TO SAFE DIS. 

FIGURE 2.7.2-4 ACC GB GEO DELIVERY OPERATIONAL SCENARIO 
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TIME (H:M:S) 

00 : 00: 00 
00: 08: 20 
00: 12: 20 
00: 44: 20 
04 : 15 :00 
04: 20 : 00 
04 : 30: 00 

05:37 :00 
06 : 15 : 00 
07:44:00 
16  : 13: 00 
16 : 17 : 00 
16 : 20 : 00 
16:44: 00 
18: 13: 00 
23: 1 2  : 00 
23:42:00 
23: 57 :00 
TBD 

EVENT 

LAUNCH 
MECO 
ORBITER OMS-1 (130 NM) 
ORBITER OMS-2 (140 NM) 
RELEASE OTV/PAnOAD 
DEPLOY AEROBRAKE 
ORBITER SEPARATION TO A SAFE 
DISTANCE 
OTV BOOST 
OTV/PAYLOAD SEPARATION 
OTV DEBOOST BURN 
ATMPSPHERIC ENTRY 
ATMOSPHERIC EXIT 
JETTISON AEROBRAKE 
OTV LEO REBOOST - 1 
OTV LEO REBOOST - 2 
ORBITER RENDEZVOUS 
GRAPPLE OTV 
OTV STOWAGE 
ORBITER DEBOOST 

- 

FIGURE 2.7.2-5 CARGO BAY GB GEO DELIVERY OPERATIONAL SCENARIO 
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TABLE 2.7.2-1 OTV DELIVERY SUMMARY COST DATA (CONSTANT $M) 

I ACC OTV CARGO BAY DELTA I 
I I 

153 .OO 153 .OO 0 .oo I 
I 

1033.40 1056.40 -23 .OO I 
I I 
1 PRODUCTION 29.90 29.90 0 .oo I 
I I 
I OPERATIONS 2998.30 2886.50 111.80 I 

I 
I 

I 
I 

I 
4125.80 88.80 I 

I 

I 
C B  % REDUCTION 2.1 I I 

I I 

I RCT 
I DDT&E 

----- ------ ----- 
4214.60 f 

I ACC-ORB MODS 163 .OO 
I 
I TOTAL LCC 4377.60 
I 
I TOTAL 1379.30 
I INVESTMENT 
I ( T o t a l  LCC 
I minus 

27 .OO 136 .OO 

4152.80 224.80 

1266.30 113.00 

I operations) I 
I I 
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TABLE 2.7.2-2 OTV DELIVERY SUMMARY COST DATA (PV $M) 

I 
I I 
I ACC OTV CARGO BAY DELTA 

117.20 117.20 0 .oo 

592.80 606.80 -14 .OO 

12.70 12.70 0 .oo I PRODUCTION 

I OPERATIONS 1060.30 1020.70 39.60 

I 

I R6rT 

I DDThE 

I 

I 
I 

CB % REDUCTION = 1.4 I 
I 
I ACC-ORB MODS 92.70 13.20 79.50 
I 
I TOTAL LCC $ 1875.70 1770.60 105.10 
I 
I TOTAL 815.40 749.90 65.50 
I INVESTMENT 
I ( T o t a l  LCC 
I minus 
I operations) 

---e- ------ ----- 
1783 .OO 1757.40 25.60 I 

I 
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TABLE 2.7.2-3 DELIVERY OPERATIONS COMPARISON (CONSTANT $M) 

ACC OTV CARGO BAY DELTA 

I I 
I GB MISSION OPS 10.50 10.50 0 .oo I 
I GB LAUNCH OPS 2806.70 2726.20 80.50 I 
I PRP OPS 1.10 0.60 0.50 I 
I PROGRAM SUPPORT 42.40 41.20 1.20 I 
I P / L  CLUST STR 7.60 6.20 1.40 I 
I PROPELLANTS 0.40 0.50 -0.10 I 
I AIRFRAME SPARES 0.00 0.00 0.00 I 
I AIRFRAME IVA 0.60 0.30 0.30 I 
I ENGINE SPARES 5 .oo 5 .OO 0 .oo I 
I ENGINE N A  0.10 0.10 0 .oo I 
I BRlLKE SPARES 70 .OO 42.70 27.30 I 
I BRAKE IVA 0.10 0.10 0 .oo I 
I GROUND REFURB 11.80 12.80 -1 .oo I 
I EXPECTED LOSS 38.60 38.60 0 .oo I 

3.40 1.70 1.70 I 
I 

2998.30 2886.50 111.80 I 
I I 

I I 
I I 
I I 
I CPF 85.7 82.5 3.19 I 
I I 

I IVA 
I TOTAL OPS 
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TABLE 2.7.2-4 CARGO BAY VS ACC DDT&E COMPARISON (CONSTANT $M) 

ACC OTV CARGO BAY DELTA 

I 

I D&D 
I SOFTWARE 
1 TOOLING * 
1 SE&I 
I TEST HARDWARE * 
I TEST OPS 
I TEST FIXTURES 
I PROG. MANAGE. 

I STAGE DDT&E 
I (INC P / L  STR) 
I LEVEL 11 
I PM,SE&I,TEST 
I TEST FLTS 
I 

I 

372.30 

61.10 
24.40 
87.20 
145.10 
20.70 
3.60 
42.80 

757.20 

176 .OO 
80.20 

378.30 

59.30 
31.50 
88 .lo 
152.40 
21.30 
3.70 
44.10 

778.70 

179.80 
77.90 

-6 .OO 

1.80 
-7 -10 
-0.90 
-7.30 
-0.60 
-0.10 
-1.30 

-21 3 0  

-3.80 
2.30 

I FACILITIES 20 .oo 20 .oo 0 .oo 
I 
I 

1033.40 1056.40 -23 .OO I DDT&E TOTAL 

I 

I 

I 

I ACC 

I CB MODS 

163 .OO 0.00 163 .OO 

0 .oo 27 .OO -27 .OO 

1196.40 1083.40 113.00 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I I 
*The main cost discriminators include the tradeof f of the heavier tankage/ 
structure of the cargo bay concept vs  the more sophisticated ACC option 
aerobraking concept. 
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0 
Operations c o s t  and the  Design, Development, T e s t ,  and Engineering (DDT&E) 

c o s t s  shown i n  Table 2.7.2-1 are f u r t h e r  d e t a i l e d  i n  Tables 2.7.2-3 and 
2.7.2-4. 
bay c a p a b i l i t i e s  are shown sepa ra t e ly .  

I n  each of t hese  f i g u r e s ,  the c o s t  of acquir ing the ACC and cargo 

2.7.2.2.2 Scavenging Computations 

2.7.2.2.2.1 Requirements and Assumptions 

Costs of scavenging were a l s o  computed f o r  both the ACC and CB 
modes. 
a t  the  scavenging c o s t s  are shown below. 

Addit ional  requirements and assumptions used as a basis f o r  a r r i v i n g  

o REQUIREMENT 

- 5.5M l b  p rope l l an t  required 
- Delivery 1999 - 2010 (12 years) 
- Investment 1995 - 1998 (4 yea r s )  
- 110 missions 

o ASSUMPTIONS 

- Constant f l i g h t  r a t e  (9 missions/yr)  
- Constant investment d i s t r i b u t i o n  
- Constant 1985 dollars 
- Cargo bay scavenging -- 181 scavengable f l i g h t s  -- 2.53M l b  propel lant  scavenged -- Development, Production & Operations Cost $151M 

(Investment $40M + Production & Operations $111M) - ACC Scavenging -- 328 scavengable f l i g h t s  -- 4.59M l b  p rope l l an t  scavenged -- Development, Production & Operations Cost $1250M (Investment $83M 
+ Production & Operations $1167M) 

- Composite Discount Factor  -- Investment = 1.34 -- Operating = 1.97 
-- STS Delivery Cost = $1014/lb 

I n  t h i s  t r a d e ,  the discount  f a c t o r  is  t r e a t e d  as a constant  t o  
s impl i fy  computations. This  can be done s ince  we use a constant  number of 
f l i g h t s  per  year and a constant  c o s t  per f l i g h t .  This same procedure i s  
appl ied t o  the DDT&E c o s t s  by assuming c o s t s  are d i s t r i b u t e d  equal ly  over a 
f i v e  year period. 

The amount of propel lant  required,  5.5 mlb, was derived from a 
performance s imulat ion using the ground mission p r o f i l e  contained i n  Revision 
8 of the MSFC OTV Mission Model. 
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We be l i eve  t h e  investment (DDT&E) c o s t  shown i n  t h e  MSFC ground 
r u l e s  w a s  high and consequently reduced the f i g u r e  t o  $83M from $212M. A 
r e v i s i o n  of t he  ACC s tudy f i n a l  r e p o r t  and the  ACC scavenging s tudy f i n a l  
r e p o r t  showed a discrepancy i n  charging. Table 2.7.2-5 shows where the 
discrepancies  occurred i n  the  o r i g i n a l  scavenging DDT&E cost ing.  

TABLE 2.7.2-5 PROPELLANT SCAVENGING DDT&E COST REVISION 

I I I I 
I I REVISED I I 
I GROUND RULE ELEMENT I COST COST I COMMENT I 
I I I I 
I I I 
I PROPELLANT SCAVENGING DDTLE 1$65M $65M I I 
I I I I 
I I I 

DDT&E f o r  STS MODS and I I 
I n t e g r a t i o n  1$101M $12M I 
o ACC DDT&E I 60.9M 12M I Assumed 20% MOD t o  DACC 
o F a c i l i t y  I 34.9M - I Exis t ing  with DACC 
o GSE I 6.4M - I Exis t ing  with DACC 

I I 

,I STS DDT&E i $46M $6M I 
I o Level 11 I n t e g r a t i o n  I 30.5M 6M I 
I o Orb i t e r  MODS I 9.5M - I 
I o ET MODS I 6.3M - I 
I I I 
I I 

1$212M $83M I 
I I 

Assumed 20% DACC t o  MOD 
Ex i s t ing  with DACC 
Ex i s t ing  with DACC 

Reductions due t o  DDT&E 
Expendable f o r  Om DACC 

2.7.2.2.2.2 P rope l l an t  Delivery Costs 

The amount of p rope l l an t  recovered under the scavenging concept is 
dependent, i n  p a r t ,  on the number of STS missions s u i t a b l e  f o r  scavenging 
operat ions.  A s i g n i f i c a n t l y  g r e a t e r  number of f l i g h t s  f o r  scavenging are 
a v a i l a b l e  using the ACC concept, (328 ACC versus  181 CB missions)  s i n c e  the 
f u l l  cargo bay space remains a v a i l a b l e  f o r  mission payloads whereas t h i s  is 
not  t he  case under the  cargo bay concept. 

Calculat ions used t o  compare the  c o s t s  of providing propel lant  a t  
LEO using the  ACC and cargo bay methods are shown in Tables 2.7.2-6, 2.7.2-7, 
and 2.7.2-8. These c a l c u l a t i o n s  are made i n  constant  d o l l a r s .  The f i g u r e s  
used t o  a r r i v e  a t  t h i s  c o s t  are ex t r ac t ed  from the OTV Concept Def in i t i on  and 
System Analysis Studies  ground r u l e s  issued by the MSFC i n  May 1985 with the 
exception of t he  t o t a l  amount of p rope l l an t  required ( 5 . 5  mlb) which is  
described above, and modifications t o  the ACC scavenging system DDT6rE (Table 
2.7.2-5). 
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The r e s u l t s  of t h i s  constant  d o l l a r  evaluat ion show nearly a b i l l i o n  d o l l a r  
spread favoring the  ACC over the cargo bay scavenging method. 

TABLE 2.7.2-6 PROPELLANT SCAVENGED 

I I No. of I I I 
I I Available  I Average I Propel lant  I 
I I Scavenging I P rope l l an t  I Scavenged I 

I Scavenged ( l b )  I ( l b )  I 
I I 

328 x 14,000 P 4.59M I 
I 

I 
I 
I ACC Version I 

I 
= 2.53M I 

I I 
I Cargo Bay I 181 x 14,000 
I I I 

I 

TABLE 2.7.2-7 STS PROPELLANT DELIVERY COST 

I I T o t a l  I I STS I I 
I P rope l l an t  I Scavenged I Delivery I Delivery I 
I Required ( I b )  I Propel lant  ( l b )  I t o  LEO I c o s t  I 

i 
I 
I I I I ($ per l b )  I I 

I I I I 
I - 4.59M) x $1014 = $923M I 

I I 

I I I 
. I ACC (5.5M 

I Cargo Bay I (5.5M - 2.53M) x $1014 = $3012M I 

TABLE 2.7.2-8 TOTAL PROPELLANT COST AT LEO 

I I Development I STS I I 
I Production I Delivery I I 
I Operations I t o  LEO I T o t a l  I 

I 
I 

I 
I 

125 OM + 23 3M I $923# 

I 
I 

I I 
I Cargo Bay I $ 151M + $3012~ = $3163M I 
I I I 

I Cost I Cost I Cost 
ACC 

Tables 2.7.2-9 and 2.7.2-10 provide a scavenging c o s t  comparison between 
Because the  ACC and cargo bay which show a s i g n i f i c a n t l y  d i f f e r e n t  p i c tu re .  

of the time value of money, the magnitude of the d i f f e r e n c e  is  reduced. 
should be noted t h a t  an approximation method was used i n  t h a t  t he  year ly  
d i s t r i b u t i o n  of c o s t s  were assumed i n  o rde r  t o  s implify computations. 

It 

The investment (DDTCE) c o s t s ,  shown i n  Table 2.7.2-9 r ep resen t  the t o t a l  
constant  d o l l a r  investment spread over fou r  years  and reduced by a discount 
f a c t o r .  
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The operat ions c o s t s  equat ion,  shown in Table 2.7.2-10 contain th ree  
terms. 
second term is t h e  cos t  of de l ive ry  by the STS and is t h e  d i f f e rence  between 
the  p rope l l an t  required pe r  year and the amount scavenged. The t h i r d  term is 
t he  c o s t  of t r a n s p o r t a t i o n  of the scavenging system. 

The f i r s t  term is t he  c o s t  of production and operat ions per  year. The 

The c o s t  of t he  ACC scavenging system is considerably higher  because i t  is 
a "smart s tage" having propulsion and guidance and, as a consequence, is 
heavier .  The weight of t h i s  system is estimated t o  be 8 . 6  k lb .  This weight, 
in t u r n ,  t r a n s l a t e s  i n t o  a c o s t  f o r  de l ive ry  t o  LEO. The r e s u l t s  of t he  
present  value d o l l a r  eva lua t ion  shows a $U3M spread favoring the ACC over the 
cargo bay scavenging method. 

TABLE 2.7.2-9 INVESTMENT COSTS (PV) 

I I Scavenged I Discount I Present  I 
I I DDT&E Per I Factor  I Value I 
I I Year I (10%/year) I Investment I 

I I I I 
I I I I Cost I 
I 

I 
I 

I 

I ACC 

I Cargo Bay 

83 
4 
- 
40 
4 
- 

x 1.34 

x 1.34  

= 27.8M 

I 
= 13.4M I 

I 

I I c o s t  of 
I I Scav. 
I 
I I Iyear 

I 

I 

TABLE 2.7.2-10 OPERATIONS COST (PV) 

c o s t  of I c o s t  of I Compo- ]Present  J 
STS Prope l l an t  I Scavenginglyr . lsite lvalue 1 
Delivery/Year I I D i s -  l o p .  I 

I lcount Icost  I 

W t .  
Lotal  Scav- S T S 1  [Pen. STS A v e .  

ops. I 
o r  x per  x F l t s .  x 1.97 = Cost I 

I 

Prop. - enged D e l  (ACC) Cost STS 

Years Vol. F l t .  per 
+ Reqd. Prop x Costl+ I 

I IPen. Year II 
I 

I 
I I I 

I Bay I I 

]] 'x 1.97 = $480M I 

lCargoI[& ] + k 5 . 5  ;:.5)H x 1014]+[0.1 x 73M x 8 ]] x 1.97 = S633M I 
I I I 
I I I 

(See Sect ion 1 . 3  f o r  an  explanat ion of uniform discounting.)  
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2.7 -2.2.3 Computation f o r  OTV Delivery and Scavenging Competition 

The competit ion f o r  the OTV delivery/scavenging concept is t o  
n e i t h e r  develop an ACC o r  cargo bay f o r  de l ive ry  of OTV t o  LEO nor develop a 
scavenging system (expendables 1994-1994; SBOTV 1999-2010 without p rope l l an t  
scavenging). 
with a p rope l l an t  tank located in the  cargo bay of the STS. The t rade assumes 
conservat ively t h a t  no DDT&E cos t  w i l l  be expended by the competition f o r  a 
p rope l l an t  tank in t he  cargo bay. Since t h i s  t r ade  w a s  designed t o  include 
the  impact of the type of reusable  GBOTV (cargo bay o r  ACC) as w e l l  as t h e  
subsequent evo lu t ion  of a space based p rope l l an t  de l ive ry  system, the 
competit ion cons i s t ed  of the following program components: 

a )  Use of e x i s t i n g  expendables from 1994-1998 
b) Subsequent propel lant  de l ive ry  of space based p rope l l an t s  v i a  STS 

tanker  (5.5 mlb over 12 years ,  1999-2010, see Table 2.7.2-11). 

A l l  missions would be accomplished with expendable veh ic l e s  and 

The c o s t  of the competit ion t o  the scavenging system, STS del ivered 
p rope l l an t ,  is summarized in Table 2.7.2-11. The cos t  f o r  ground based 
operat ions from 1994-1998 with expendable s t ages  is computed t o  be $1874M 
(Table 2.7.3-23, 1994-1998). This amount w a s  derived by the  Martin Marietta 
LCC computer model. The t o t a l  competit ion c o s t  is t he  sum of the scavenging 
competit ion (STS tanker)  ($916M) and the  expendable s t age  d e l i v e r y  ($1874M) 
f o r  a t o t a l  competit ion cos t  of $2790M. . 

TABLE 2.7.2-11 COMPETITION PROPELLANT DELIVERY COST 

I I I I 
Prope l l an t  I STS Delivery I Composite I STS I 
per year I t o  LEO I Discount I Prope l l an t  I 

I Delivery Cost I 

I 

I Factor I ($M PV) I 
I ($  per pound) 
I 

X 1014 X 1.97 = 916 

I 

2.7.2.2.4 STS Cargo Bay Benefi t  Factor  Computation 

The d i f f e rence  i n  manifesting cargo under the  ACC and cargo bay 
modes of ope ra t ion  shows t h a t  a d d i t i o n a l  volume and weight i s  made a v a i l a b l e  
t o  the STS f o r  o the r  payloads when t h e  ACC mode is used. I n  order  t o  make a 
f a i r  assessment of t h i s  b e n e f i t ,  c r e d i t  is awarded t o  the ACC concept f o r  the 
b e n e f i t  t he  STS rece ives .  This  is  j u s t i f i e d  t o  o f f s e t  ACC development c o s t s  
s i n c e  c o s t  i s  added t o  the OTV system when expenditures are made on c o l l a t e r a l  
systems f o r  OTV support .  In order  t o  compensate f o r  anomalies t h a t  may e x i s t ,  
the  b e n e f i t  is reduced t o  50 percent of the ca l cu la t ed  amount. 
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The c a l c u l a t i o n s  involve examination of the 35 ground based missions 
in both the ACC and cargo bay modes. 
volumes, missions have payload weight and volume less than the 60 l i n e a r  f e e t  
and 72 k l b  STS c a p a c i t i e s .  A l a r g e  volume b e n e f i t  is r e a l i z e d  by moving the 
OTV out  of the cargo bay i n t o  the  ACC. Adjustments are made, accordingly,  i f  
e i t h e r  the weight o r  volume b e n e f i t s  exceeded the capaci ty  of the STS, e.g., 
i f  t he  payload weight i s  t h e  maximum 72 k l b  and the  cargo bay l i n e a r  volume is 
50 f e e t ,  ze ro  c r e d i t  is given f o r  t he  remaining 10 l i n e a r  f e e t  s i n c e  adding 
a d d i t i o n a l  payload w i l l  exceed the STS weight capacity.  

Due t o  d i f f e r i n g  payload weights and 

Examination of the 35 ground based missions produced the ACC and 
cargo bay t o t a l  weights and volumes c o s t  bene f i t  f o r  OW de l ive ry  shown below. 

Avai lable  capac i ty  i n  the cargo bay mode: 

Volume: $50M 
Weight: $130M 

Avai lable  capac i ty  i n  the  ACC mode: 

Volume : $500M 
Weight: $170M 

These f i g u r e s  are used i n  t h e  algorithms shown i n  Table 2.7.2-12 t o  produce 
the STS'derived b e n e f i t  of $245M. 

TABLE 2.7.2-12 STS DERIVED BENEFIT 

Volume Benefi t  I Weight Benefi t  I I 
I I I 

I 
I 
i Benefi t  I ACC I CB I Benefit  I ACC I CB I STS I 
I Reduction I Volume I Volume I Reduction I w t  I w t  I Derived I 
I Factor  I Benefi t  I Benefit  I Factor I Ben. I Ben. I Benefit  

I I I I I I 
0.5 x (500 M - 50 M) + 0.5 x (170M - 130M) = $245M 

I 
I 

(See Sect ion 2.7.1, pages 73-74, for an  explanat ion of STS bene f i t s . )  

The c o s t  components t h a t  comprise the t r ade  a l t e r n a t i v e s  and hypothesized 
competit ion are summarized in Table 2.7.2-13. 
t oge the r  in Table 2.7.2-14 t o  show the  combined c o s t  f o r  OTV de l ive ry  and 
scavenging f o r  investment and operat ions under each of the t r ade  
a l t e r n a t i v e s .  
a l t e r n a t i v e s  contained i n  the  next  paragraph below. 

These f i g u r e s  are grouped 

The t o t a l  shown on t h i s  t a b l e  are used i n  the analyses  of the 
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TABLE 2.7.2-13 COST DATA SUMMARY 

I 
I ITEM 

1 
I COST (PV) 

I 
I OTV Delivery Cost 
I ACC 
I Investment 
I Operations 
I Cargo Bay 
I Investment 
I 0 pe ra t i ons 
I Scavenging Costs 
I ACC 
I Investment 
I 0 pe ra t ions 
I Cargo Bay 
I Investment 
I Operations 
I 

$815.4M 
$1060.3M 

$27.8M 
$480. OM 

$13.4M 
$633 .OM 

I 

I Competitive Costs I I 
I GB Delivery I $1874M I 
I STS P rope l l an t  Delivery I $916M I 
I STS Derived Benefi t  f o r  OTV Delivery I I 
I ACC I ($245.OM/OTV Credi t )  I 
I Cargo Bay I O  I 
I I I 

TABLE 2.7.2-14 ALTERNATIVE COST SUMMARY 

I I I I I 
1 ALTERNATIVE I OTV DELIVERY I SCAVENGING I TOTAL I 
I I I I I 
I I I 

I - $ 777.7M I 
I CB/ACC (Al te rna t ive  1) I 
I Investment I $ 749.9M + $ 27.8M 
I Operations I $1020.7M + $480.0~ = $1500.7M I 

I 
I 

I I 
+ $ 13.4M = $ 763.3M I 

I CB/CB ( k l t e r n a t i v e  2) I 
I Investment I $ 749.9M 
I Operations I $1020.7M + $633.0~ = $1653.7M I 
I I I 
I ACC/ACC (Al te rna t ive  3) I I 
I Investment I $ 815.4M + $ 27.8M = $ 843.2M I 
I Operations I $1060.3M + $480.0~ = $1540.3M I 
I I I 

I + $ 13.4M - $ 828.8M I 
I ACC/CB (Al t e rna t ive  4) I 
I Investment I $ 815.4M 
I Operations I $1060.3M + $633.0~ - $1693.3M I 
I I I 

(To t rack numbers, s ee  Tables 2.7.2-2, 2.7.2-9 and 2.7.2-10.) 
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2.7.2.3 A l t e r n a t i v e  Comparison. 

The aggregate b e n e f i t s  f o r  each of the de l ive ry  and scavenging 
combinations a r e  shown i n  Tables 2.7.2-15 and 2.7.2-16. The d a t a  used i n  
these t a b l e s  have been brought forward from the Cost Data Summary (Table 
2.7.2-13) and the  Al t e rna t ive  Cost Summary (Table 2.7.2-14). 

The b e n e f i t ,  shown in Table 2.7.2-15, i n d i c a t e s  t h a t  a l l  a l t e r n a t i v e s  
provide an advantage over n o t  undertaking any development f o r  STS de l ive ry  o r  
scavenging. 

The r e t u r n  on investment, shown i n  Table 2.7.2-16, f a c t o r s  in 
investment cos t .  
provide a v i a b l e  so lu t ion .  

This  c a l c u l a t i o n  supports  the f ind ing  t h a t  a l l  a l t e r n a t i v e s  

A comparison of a l t e r n a t i v e s  aga ins t  t he  p r i n c i p a l  s e l e c t i o n  cri teria 
This comparison shows the a l t e r n a t i v e  of using is  shown i n  Tables 2.7.2-17. 

t he  ACC f o r  both the  OTV de l ive ry  and the scavenging system provides the  
g r e a t e s t  advantage. 
cargo bay space leaving a d d i t i o n a l  weight and volume f o r  o the r  payloads. 
i s  a s i g n i f i c a n t  advantage s i n c e  the a v a i l a b l e  capaci ty  can be used f o r  
l o g i s t i c s  cargo des t ined  f o r  the space s t a t i o n  o r  f o r  o the r  payloads t h a t  may 
be o r b i t e d  during the same time frame. 

T h i s  is  l a r g e l y  due t o  the f r e e i n g  of revenue bearing 
This 

TABLE 2.7.2-15 BENEFITS (PV) 

I I I I I I 
I I i OTV DELIVERY i STS i I 
I OTV DELIVERY/ I COMPETITION I 6r SCAVENGING I DELIVERED I TOTAL I 

I 
I 
I 

I 
I 

I 

I 

I 

I I I I I SCAVENGING 

- $1289.3M I 

= $1136.3M I 

= $1494.7M I 

= $1341.7M 1 

I $2790.0M - $1500.7M + 0.0 
I 
I $2790.0M - $1653.7M + 0.0 
I 
I 

I CB/ACC 

I CB/CB 

I ACC/ACC 
I $2790.0M - $1540.313 + $245.OM 

I $2790.011 - $1693.3M + $245,0M I ACC/CB 
I I I 

(See Sect ion 2.7.1, pages 73-74, f o r  an explanat ion of STS bene f i t s . )  
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TABLE 2.7.2-16 RETURN ON INVESTMENT 
(1985 $M [PVI) 

I I I I I I 
I I om I I I I 
I IDELIVERY 6r ISTS I I I 

OTV DELIVERY/ I COMPETITION I SCAVENGING I DERIVED I INVESTMENT I T0TA.L I 
I BENEFIT I (DDT&E) IROI I 

I 
CB/ACC l((2790.0 - 1500.7 + 0.0) / 777.7) -1 = 65.8% I 

I I 
CB/CB I ((2790.0 - 1653.7 + 0.0) / 763.3) -1 = 48.9% I 

I I 
AC C / AC C l((2790.0 - 1540.3 + 245.0) / 843.2) -1 = 77.3% I 

I I 
ACC/CB l((2790.0 - 1693.3 + 245.0) / 828.8) -1 = 61.9% I 

I I I I I I 
SCAVENGING 

TABLE 2.7.2-17 OTV DELIVERY/SCAVENGING TRADE RESULTS 

ECONOMIC I I I I i 
I 
I 
I 

I 61.9% I 
I I 

I I I I 
I 

I 
I 
I 
I 

I I I 

I 
I I I 
I I 

SCORE I I I I I 
I I I I I 
I I I 

Return on I 8.5 I 6.3 I 10.0 I 8.0 I 

I CB/ACc I CB/CB I ACC/ACC I ACC/CB 

I 7703% I 65*8% 

I $1341*7M 
I$ 843*2M I$ 828*8M 

FACTOR 

I 48.9% Return on 
Investment 

Benefits I$1289.3M I$1136.3M I$1494.7M 

Investment I$ 777.7M I $. 763.3111 

Investment I I I I I 
I I 
I 9.1 I Benefits I 8.6 I 7.7 
I I 
I 9.2 I 

I 
I 10.0 

I I 

I I I 
I 9.8 I 10.0 I 9.1 I Investment I I I ’  I I 
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2 . 7 . 2 . 4  Conclusion 

We conclude from t h i s  study t h a t  a l l  a l t e r n a t i v e s  considered provide a 
b e n e f i t  worthy of acqu i s i t i on .  
f o r  d e l i v e r i n g  the  OTV t o  LEO during ground based operat ions and using the ACC 
f o r  a scavenging system during space based operat ions provide the g r e a t e s t  
economic advantage. This  is c l e a r l y  ind ica t ed  as t h e  bes t  a l t e r n a t i v e  through 
a comparison of r e t u r n  on investment with b e n e f i t s  and through a comparison of 
r e t u r n  on investment with investment (DDTCE). 

Of the a l t e r n a t i v e s  considered, using an ACC 

A major element i n  providing the ACC advantage is the  inc rease  i n  
a v a i l a b l e  payload volume and weight by moving the  OTV and scavenging system 
out  of the revenue producing STS cargo bay and i n t o  the ACC. 

It is important t o  note  t h a t  t h i s  conclusion i s  based upon a r e l a t i v e l y  
low STS f l i g h t  rate. 
the  ACC scavenging concept would inc rease  and thus make i t  even more 
a t t r a c t i v e .  

If a more o p t i m i s t i c  rate is assumed, the b e n e f i t s  of 

F i n a l l y ,  as noted a t  the  beginning of t h i s  s t e p  of the t r ade  r e p o r t ,  
t he  s e l e c t i o n  of the ground based OTV de l ive ry  mode i n  the f i r s t  p a r t  of the 
a n a l y s i s  w i l l  e l imina te  one of two OTV evolut ionary conf igu ra t ion  opt ions in 
t he  second p a r t  of the ana lys i s .  
thereby e l imina te s  Option 6 ,  OTV cargo bay de l ive ry  during ground basing, and 
r e t a i n s  Option 2 ,  ACC de l ive ry ,  f o r  f u r t h e r  considerat ion.  

Se lec t ion  of t he  ACC f o r  OTV de l ive ry  

2 . 7 . 3  Step  2 ,  Pre fe r r ed  Overal l  Evolution 

The purpose of this subtrade study a n a l y s i s  is t o  select the most 
economical OTV evolu'tion s t r a t e g y  from the remaining f i v e  t r a d e  s tudy opt ions 
shown in Figure 2 . 7 . 3 - 1 .  
op t ion  (Option 7 )  and fou r  space based options.  
avoids  the high investment c o s t  f o r  Space S t a t i o n  accommodations and f o r  a 
scavenging system. 
de l ive ry  c o s t  t o  LEO f o r  a l l  but the veh ic l e s  i n i t i a l  de l ive ry  t o  the Space 
S ta t ion .  
dimension of the STS cargo bay/ACC. 

The remaining opt ions include one ground based 
The ground based opt ion 

The space based opt ions have merit i n  avoiding a high 

Space based configurat ions are a l s o  less constrained by the envelope 

Economics are a p r i n c i p a l  d i sc r imina to r  in t he  s e l e c t i o n  of the 
development s t r a t e g y .  Since the re  are no near term mission d e l i v e r y  
requirements c i t e d  i n  the  mission model which cannot be accomplished by 
e x i s t i n g  upper s t ages ,  the s e l e c t e d  OW system must be ab le  t o  improve the 
c o s t  of d e l i v e r i n g  payloads over t he  cu r ren t  STS/expendable systems. 

Economic d a t a  gathered f o r  each opt ion are der ived from simulated missions 
flown a g a i n s t  Revision 8 of the MSFC OTV Low Mission Model. Economic d a t a  f o r  
t h e  competit ion,  represented by e x i s t i n g  upper s t a g e  payload de l ive ry  systems , 
is a l s o  gathered i n  t h e  same way. Using these d a t a ,  the opt ions are compared 
with one another  and the  competition. 
development and operat ion of i n t e r f a c i n g  systems such as t h e  ACC, scavenging, 
etc.,  are assigned t o  the op t ion ( s )  t h a t  use them. 

Any c o s t s  a s soc ia t ed  with the 
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Figures  2.7.3-3 through 2.7.3-7, placed a t  the  back of t h i s  s e c t i o n  of the 
r e p o r t ,  p i c t o r i a l l y  i l l u s t r a t e  the  conf igura t ions  and evolut ionary s t e p s  of 
each of the  remaining opt ions .  Configurat ion a l t e r a t i o n s  may take p lace  a t  
two b a s i c  block changes. One is  from ground basing t o  space basing and the  
o the r  is  from nonman-rated t o  man-rated. 
designed f o r  packaging wi th in  the  ACC whereas space based conf igura t ions  are 
not  as r e s t r i c t e d  by a cons t ra in ing  envelope. 
basing inc lude  moving the  av ionics  from an i n t e g r a l  packaging wi th in  the 
s t r u c t u r e  t o  a r i n g  design t o  f a c i l i t a t e  on-orbit  maintenance. 
nonman-rated conf igu ra t ion  t o  a manrated conf igura t ion  involve added 
redundancy t o  preclude any s i n g l e  c red ib l e  f a i l u r e  from prevent ing the s a f e  
r e t u r n  of t he  crew. A prime example i s  moving from a s i n g l e  engine t o  dua l  
engines.  The aerobrake is  unique t o  each configurat ion.  

Ground based conf igura t ions  are 

Changes from ground t o  space 

Changes from a 

I 
I 
I 
I 
I OPTION 

II 
1 2  
I 
I RE- 

I SERVED 
1 4  . 

I 
1 5  
I 
I RE- 

I 
1 7  

I SERVED 

I 

ZB 
IOC 

I SB 

I I O C  

IM4N- I 
I PTED I 

34 95 96 97 98 199 00 01  02 03 04 05 06 07 108 09 10 I 

I I 
I I 
I I 
I I 

LEGEND: 
GBU 45 k l b  Ground Based Nonman-rated 
S BU 
S BM 
GBM 55 k l b  Ground Based Man-rated 
EXU Expendable Nonman-rated 
CB STS Cargo Bay 
AC C A f t  Cargo Carrier 

55 k l b  Space Based Noriman-rated 
55 k l b  Space Based Man-rated 

NOTE : 
1. 
2. 

A l l  space based O T V s  are de l ive red  i n  the  STS cargo bay. 
A l l  ground based OTVs are de l ive red  i n  the  ACC except  as noted i n  
Option 6 .  

FIGURE 2.7.3-1 REMAINING OTV CONFIGURATION EVOLUTION OPTIONS 
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2.7.3.1 Cost of Remaining Al t e rna t ives  

Aggregate program c o s t s  f o r  each of t he  remaining opt ions are 
summarized i n  Table 2.7.3-1 i n  constant  d o l l a r s  and i n  Table 2.7.3-2 i n  
discounted d o l l a r s .  These t a b l e s  include c o l l a t e r a l  c o s t s  a s soc ia t ed  with 
each op t ion ' s  i n t e r f a c e  requirements, i.e opt ion 's  i n t e r f a c e  cos t  f o r  Space 
S t a t i o n ,  ACC, p rope l l an t  scavenging, and payload t r anspor t a t ion .  The t a b l e s  
a l s o  address  research and technology, DDT&E, production, and operat ions 
cos t s .  
f o r  each op t ion  is contained i n  Tables 2.7.3-8 through 2.7.3-22 l oca t ed  a t  the 
back of t h i s  s ec t ion .  

A more d e t a i l e d  breakdown f o r  DDT&E, production and operat ions cos t  

The l i f e  cycle  c o s t  t o t a l s  between opt ions are q u i t e  c lose.  The 
d i f f e rence  between the highest  and lowest opt ion in discounted d o l l a r s  is  only 
14% (Table 2.7.3-2). This i n d i c a t e s  t h a t  other  f a c t o r s  such as r i s k ,  
f l e x i b i l i t y ,  and growth play a g r e a t e r  r o l e  in d i sc r imina t ing  between options.  

L i f e  cyc le  c o s t s  c a l c u l a t i o n s  f o r  the competit ion represented by 
e x i s t i n g  upper s t a g e  veh ic l e s  are shown in Table 2.7.3-23 located a t  the back 
of t h i s  s ec t ion .  Information ex t r ac t ed  from the  t o t a l s  shown on t h i s  t a b l e  is 
used i n  the d i scuss ions  below. 

The c o s t  per f l i g h t  t o  capture  145 missions of the Revision 8 Low 

When flown aga ins t  the Revision 8 Low Miss'ion 
Mission Model a r e  shown in Table 2.7.3-3. Two values are shown f o r  the 
competit ion c o s t  per f l i g h t .  
Model, the expendable upper s t a g e s  take more STS f l i g h t s  and more upper s t ages  
t o  d e l i v e r  the payloads. 
c o s t  divided by the number of t r anspor t a t ion  a c t i o n s ,  i.e. 220 f l i g h t s .  For 
comparative purposes t h e  c o s t  per f l i g h t  is ad jus t ed  t o  145 missions thereby 
r a i s i n g  the c o s t  per  f l i g h t  t o  an equivalent  of $155.OM. 
f i g u r e  with the  c o s t  per f l i g h t  of each opt ion shows t h e  opt ions with a 
s i g n i f i c a n t  advantage. 

The real  c o s t  per f l i g h t  is determined by the t o t a l  

A comparison of t h i s  
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, 

TABLE 2.7.3-1 OPTION COST SUMMARY (CONSTANT $M) 

I I OPTIONS I I I 1 2 4 5 7 I 
IINTERFACING I I 

I Space I I 
936 .OO 936 .OO 936.00 0 .oo I 

I 
I I 

I ACC I 163.20 163.20 163.20 163.20 163.20 I 
I I I 
I I I 
1 Prop Scav I 83.00 83.00 83 .OO 83 .OO 0 .oo I 
I I I 
I I I 
I P/L Trans I 4995.11 4995.11 4995.11 4995.11 4995.11 I 
I I I 
I - I  

I I I 
I I 
I I I 

I I 
I I 
I I I 

153 .OO 153 .OO 153 .OO 153 .OO I 
I 
I 

I 
I 
I DDTCE I 1351.49 1414.69 1218.70 1257.60 1223.79 I 

1 SYSTEM I GBU/SBM/SBM I GBU/SBU/SBM I Emr/SBM/SBM I EXU/SBU/SBM I GBU/GBU/GBM I 

I Station I 936.00 

I Subtotal 6177.31 6177.31 6177.31 6117 .31 5158.31 I 

I OTV 

1 153*00 
I R&T 

i 
I 
I Prod. 

I 

I 

I 

I OPS 
1 
I TOTAL 

145.30 251.10 29.90 145.30 242.30 

6408.21 6098.01 8754 .OO 8443 .OO 12332.21 

8058 .OO 7916.80 10155.60 9998.90 13951.30 

14235.41 14094 .ll 16332.91 16176.21 19109.61 
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TABLE 2.7.3-2 OPTION COST SUMMARY (DISCOUNTED $M) * I I OPTIONS I 
I I 1 2 4 5 1 I 
IINTERFACING I I 
I SYSTEM I GBU/SBM/SBM IGBU/SBU/SBM I EXU/SBM/SBM 1 EXU/SBU/SBM I GBU/GBU/GBM I 
I Space I I 
1 Stat ion  I 315.50 315.50 315.50 315 S O  0 .oo I 
I I I 
I I I 

. I ACC I 92.60 92.60 57.53 57.53 92.66 I 

I I 
I Prop Scav I 30.75 30.75 30.75 30.75 

I 
0 .oo I 

I I 
I P/L Trans I 790.00 790 .OO 790 .OO 790.00 

I 
790.00 I 

I I 
I Subtotal I 1228.85 1228.85 1193.78 1193.78 

I 
882.66 I 

I I 
I I 

I 
I 

I I 
I I 

I I I 
I R&T I 116.94 116.94 72.61 72.61 116.94 I 

I 
I 
I I 

I Prod. I 47.28 59.07 8.66 23.33 57.23 I 
I I I 

I I I 
1543.63 2416.02 2363.09 2527.33 I 

I 
I I 

I Subtotal  I 2452.86 2405.96 2932.71 2880.96 3341.40 I 

I I I 
I TOTAI, 1 3181.71 3634.81 4126.49 4076.74 4224.06 I 

435.42 421.93 639.90 686.32 I DDT&E 

I OPS I 1596*57 
I I I 

I I I 
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I '  

T A L E  2.7.3-3 COST PER FLIGHT (CONSTANT $M) 

I 1 I 

I I 
I I 

I Operations + P/L Trans / 145 F l t s  = Cost /Fl ight  I I OPTION 

I 1 
I GBU/SBM/SBM 
I 
I 2 
I GBU/SBU/SBM 
I 
I 4 
I EXU/SBM/SBM 
I 
I 5 
I EXU/SBU/SBM 
I 
I 7 
I GBU/GBU/GBM 
I 

I 6408 + 
I 
I 
I 6098 + 
I 
I 
I 8754 + 
I 
I 
I 8443 + 

i 12332 + 
I 
I 

* I  
I Competition Cost per F l igh t :  

79 I 4995 / 145 = 

I 
I 

77 I 4995 / 145 .c 

I 
I 

95 I 4995 / 145 P 

I 
I 

4995 / 145 = 93 I 
I 
I 

119 I 4995 / 145 = 

I 
I 
I 
I 

I 220 required missions cost:  $120.8 I 
I 145 equivalent  mission cost:  $155.0 I 
I I 

The investment c o s t ,  shown i n  discounted d o l l a r s  i n  Table 2.7.3-4, 
includes the c o s t  of acquir ing the OTV and the c o s t  of i n t e r f a c i n g  systems. 
Ground based Option 7 shows t h e  lowest investment c o s t  l a r g e l y  because it does 
not use e i t h e r  space s t a t i o n  o r  scavenging systems. Options 4 and 5 a l s o  show 
a low investment because they do not have a ground based OW conf igu ra t ion  and 
can d e f e r  development c o s t s  of space based OTV conf igu ra t ions  
t o  a later time where they are discounted more. 
h ighes t  investment c o s t s  due t o  ear l ier  expenditures f o r  ACC accommodations, 
research and technology, and DDT&E. 

Options 1 and 2 show the 
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TABLE 2.7.3-4 INVESTMENT (DISCOUNTED $M) 

I 

I 
I 1 
I GBU/SBM/SBM 
I 
I 2 
I GBU/SBU/SBM 
I 
I 4 
I EXU/SBM/SBM 
I 
I 5 
I EXU/SBU/SBM 
I I 7 
I GBU/GBU/GBM 

I OPTION 

I 
I 

Space Station + ACC + Scav. + R&T + DDT&E + Prod. = Investment I 
I 
I 
I 
I 

315.5 + 92.6 + 30.8 + 116.9 + 686.3 + 59.1 = 1301.2 I 
I 
I 

315.5 + 0.0 + 78.6 + 72.6 + 435.4 + 8.7 = 910.8 I 
I 
I 

315.5 + 0.0 + 78.6 + 72.6 + 424.5 + 23.3 = 914.5 I 
I 
I 

0 .o + 92.7 + 0.0 + 116.9 + 639.9 + 57.2 = 906.7 I 
I 

315.5 + 92.6 + 30.8 + 116.9 + 692.1 + 47.3 = 1295.2 

I I I 

A benefit analysis is shown i n  Table 2.7.3-5 for each option. Benefit 
represents the difference between the cost of the competition and the OTV 
option to accomplish the mission model. Where applicable, the STS benefit 
(described i n  2.7.2.2.4 above) is added to provide the total benefit the 
option holds over the competition t o  do the job. 

TABLE 2.7.3-5 OW OPTION BENEFITS (PV $M) 

I 

I 
I 
I GBU/SBM/SBM 
I 
I 2 
I GBU/SBU/SBM 
I 
I 4 
I EXU/SBM/SBM 
I 
I 5 
I EXU/SBU/SBM 

7 
I 
I 
I GBU/GBU/GBM 

1 OPTION 

1 

I 
I Competition - Option Cost + STS Benefits = Benefit 
I ( O p s  + P/L Trans) 
I 4974 - (1596.6 + 790) + 245 = 2832.4 
I 
I 
I 

I 
I 
I 4974 - (2416.0 + 790) + 0 
I 
I 
I 
I 
I 

= 2885.4 I 4974 - (1543.6 + 790) + 245 

= 1768.0 

= 1820.9 I 4974 - (2363.1 + 790) + 0 

= 1989.4 I 4974 - (2527.3 + 790) + 332.7 
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The investment cos t  is added i n t o  the equat ion i n  Table 2.7.3-6 t o  
produce a r e t u r n  on investment ( R O I )  r a t i o .  The R O I  d i f f e rence  among opt ions 
is small with Options 1, 2 and 7 v i r t u a l l y  f a l l i n g  i n t o  a t i e .  
favorable  value i s  p r i n c i p a l l y  due t o  i ts  r e l a t i v e l y  low investment cos t .  

Option 7 

TABLE 2.7.3-6 OTV OPTION RETURN ON INVESTMENT (PV) 

~ 

I 
I (Benefi t  / Investment) - 1 = ROI I 
I I 
I I 

~~ ~~ ~ 

I I 

I 
I OPTION 

I 1 
I GBU/SBM/SBM 
I 
I 2 

i (2832.4 / 1295.2) - 1  5 1.19 
I 
I 
I (2885.4 / 1301.2) - 1  5 1.22 

I GBU/SBU/SBM I 
I I 

I EXU/SBM/SBM I 
I 4 I (1768.0 / 920.3) - 1  = 0.92 

I 
I 5 - 1  

I 
I (1820.9 / 921.4) = 0.98 

I EXU/SBU/SBM I 
I I 
I 7 I (1989.4 / 906.7) - 1  1.19 
I GBU/GBU/GBM I 

Figure 2.7.3-2 shows t he  payback and accumulation of b e n e f i t s  the f i v e  
remaining opt ions hold over t he  competition. The a l l  ground based opt ion,  
Option 7, provides the earliest payback because of the lower investment cost .  
The ra te  of b e n e f i t  accumulation f o r  Option 7 decreases when the mission 
complexity inc reases  and a g r e a t e r  number of STS f l i g h t s  are required t o  
support  mission operat ions.  

Options 4 and 5, which use e x i s t i n g  expendable veh ic l e s  f o r  t he  ground 
por t ion  of the model, e f f e c t i v e l y  delay the l a r g e  space based investment. 
T h i s  d e l a y  a l s o  reduces t h e  t i m e  a v a i l a b l e  f o r  bene f i t  accumulation thereby 
inc reas ing  the number of missions before payback is r e a l i z e d  and l e s sen ing  the 
n e t  bene f i t  accumulation vis-a-vis t h e  other  opt ions,  
required before  payback of an opt ion is  r e a l i z e d  as follows: 

' 

The number of missions 

o Option 1 48 Missions 

0 op t ion  2 48 Missions 

0 op t ion  4 80 Missions 

0 op t ion  5 81 Missions 

o Option 7 25 Missions 
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2.7.3.2 Al te rna t ive  Comparison 

Table 2.7.3-7 shows the p r i n c i p a l  economic f a c t o r s  f o r  the candidate 
opt ions along with scoring. A s  before, the best  candidate is awarded a score 
of 10 and the o t h e r  opt ions a score r e l a t i v e  t o  t h a t  awarded the best 
candidate.  The t a b l e  shows Options 1 and 2 rank high with v i r t u a l l y  the same 
scores.  Option 7 scores  high a n  investment which a l s o  raises the score f o r  
ROI.  Option 7 b e n e f i t s  are d i sp ropor t iona te ly  low vis-a-vis Options 1 and 2. 
Options 4 and 5 score high on investment cos t  but low in the  o the r  two 
ca t egor i e s .  The payback comparison, Figure 2.7.3-2, along with the ROI and 
b e n e f i t s  comparison place Options 4 and 5 below the o t h e r  opt ions considered. 

TABLE 2.7.3-7 OTV OPTION RESULTS 

IEconomic I 1 2 4 5 7 I 
I Factor  IGBU/SBM/SBM GBU/SBU/SBM EXU/SBM/SBM EXU/SBU/SBM GBU/GBU/GBM i 

I ROI I 1.19 1.22 0.92 0.98 1.19 I 
!Bene f i t s  I 2832.4 2885.4 1768.0 1820.9 1989.4 I 
I Investment I 1295.2 1301.2 920.3 921.4 906.7 I 
I I . I  
I I I 
I Scores I I 
I I I 
I I I 
I ROI I 9.8 10 7.5 8.0 9.8 I 
IBenefi ts  I 9.8 10 6.1 6.3 6.9 I 
I Investment I 7 7 9.8 9.8 10 I 
I I I 

Option 7 remains a t t r a c t i v e  only i f  the low investment c o s t s  a r e  real. 
In order  f o r  t he  a t t r a c t i v e n e s s  of t h i s  opt ion t o  be sus t a ined ,  the STS u s e r  
f e e  of $73M per  f l i g h t  o r  less must be achieved. For example, i f  the STS use r  
charge were t o  inc rease  t o  $100M, the Option 7 bene f i t  would be reduced t o  
$756# (discounted $) making it  economically undesirable  in t h a t  the investment 
would not be paid back in 145 mission. The STS l i f t  capaci ty  is another 
considerat ion.  
f i n d  t h a t  1.6 s h u t t l e  f l i g h t s  per OTV mission is required.  I f  t h i s  capaci ty  
should be reduced t o  65 klb, f o r  example, the bene f i t  would decrease t o  $1625M 
(discounted $1 with a r e s u l t i n g  ROI of 0.79. 
Option 7 competes with revenue producing payloads f o r  cargo space thereby 
reducing STS p r o f i t a b i l i t y .  

When using the groundruled 72 k l b  STS payload capaci ty ,  we 

It a l s o  should be noted t h a t  

Options 1 and 2 d i f f e r  only in t he  space based unmanned phase of the 
mission model i n  t h a t  Option 2 s p e c i f i e s  an intermediary space based nonman- 
r a t e d  v e h i c l e  whereas Option 1 moves i n i t i a l l y  t o  a space based man-rated 
vehicle .  
of acquir ing a d i f f e r e n t  veh ic l e  f o r  t he  space based nonman-rated phase. 

Costs f o r  Option 2 are s l i g h t l y  higher p r i n c i p a l l y  due t o  the c o s t s  
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There are fou r  p r i n c i p a l  non-economic f a c t o r s  t h a t  favor  Option 1 over 
Option 2.  
r e l i a b i l i t y .  
t h a t  i t  is  only involved with one program cycle (space based man-rated). 
Third,  Option 1 provides g r e a t e r  f l e x i b i l i t y  i n  t h a t  t he  earlier experience 

advanced missions earlier, i.e. heavier  payloads, manned missions,  and luna r  
mission. 
only two major program cycles  r a t h e r  than 3, involves no space based avionics  
repackaging, and remains with only one engine type r a t h e r  than two engine 
types.  

F i r s t ,  Option 1 maximizes early v e r i f i c a t i o n  of man-rated 
Second, Option 1 reduces Space S t a t i o n  ope ra t iona l  complexity i n  

I with the veh ic l e  can promote confidence f o r  a c c e l e r a t i n g  the schedule f o r  more 
I 
I Fourth,  Option 1 has a lower c o s t  r i s k  than Option 2 because i t  has 

I 2.7.4 Conclusion 

A l l  OTV options provide an economic advantage over the continued use of 
e x i s t i n g  expendable veh ic l e s  f o r  accomplishing the missions postulated i n  
Revision 8 of the MSFC Low OTV Mission Model. 

Step 1 of the t r ade  study shows t h a t  it i s  b e t t e r  during ground based 
operat ions t o  d e l i v e r  the OW v i a  the STS Af t  Cargo Carrier (Option 2)  r a t h e r  
than i n  the cargo bay (Option 6 ) .  Step 2 of the t r ade  study shows t h a t  Option 
1 and 2 c o s t s  are e s s e n t i a l l y  equal  and both opt ions hold an economic 
advantage over the remaining options.  
advantages over Option 2 .  
map-rated r e l i a b i l i t y ,  reducing space s t a t i o n  operat ions complexity, providing 
g r e a t e r  f l e x i b i l i t y  by making it  possible  t o  do more advanced missions 
earlier, and reducing r i s k  by el iminat ing the need t o  change veh ic l e  
conf igu ra t ions  midway through the  space based phase of the mission model. 

Option 1 provides s e v e r a l  non economic 
These include maximizing e a r l y  v e r i f i c a t i o n  of 

Based upon the  ground rules and assumptions used i n  t h i s  s tudy,  Option 1 
is  recommended as t h e  p re fe r r ed  evolutionary s t r a t e g y  f o r  OTV development. 
This opt ion progresses from a nonman-rated OTV c a r r i e d  i n  the ACC during 
ground based operat ions t o  a man-rated OTV based a t  the space s t a t i o n  during 
space based operat ions.  

The conclusions reached f o r  the p re fe r r ed  o v e r a l l  evo lu t ion  are l a r g e l y  
based upon the  postulated ground r u l e s  and assumptions and the  r e s u l t s  of 
o the r  t r a d e  s t u d i e s  contained i n  t h i s  r epor t .  Any changes i n  the  underlying 
ground r u l e s  and assumptions may have a bearing upon the conclusions reached 
i n  t h i s  study. Some key issues t h a t  may a l t e r  t hese  r e s u l t s  include: mission 
model l e n g t h  and a c t i v i t y  l e v e l ,  u t i l i z a t i o n  of scavenging f o r  p rope l l an t  
recovery a t  LEO, operat ions r i s k  of the ACC, STS cos t  per f l i g h t  changes -- up 
o r  down, STS payload l i f t  c a p a b i l i t y  -- up o r  down, a v a i l a b i l i t y  of the STS, 
accommodation of DOD requirements including no Space S t a t i o n  u t i l i z a t i o n  and 
access t o  molniya o r b i t s ,  and r e s t r i c t i o n s  on Space S t a t i o n  u t i l i z a t i o n  due t o  
i n t e r f e r e n c e  with o the r  operat ions.  
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